CALTECH FORTH

by MARTIN 8. EWING

ewing@alum.mit.edu

Capyright {(C) 1987 Martin 5. Ewing

Copyright (C) 2006 Martin S. Ewing

CONTENTS

FREFACE
1. INTRODUCTION i—1
1.1 Beginnings. i-1
.2 Beneral Characteristics. 1-2
1.7 Definitions and Standards. 1-4
1.4 Organization of the Book. i—4
2. FORTH DOVERVIEW 2-1
2.1 Words and the Dicticnary. 21
2.2 The &Stack. 25
2.3 BRBlock Storage. 2-4
2.4 Defining new Words, 2-3
2.5 Storing and retrieving data in memory. 29
2.6 Controlling Forth —— The Text Interpreter. 2-10
2.7 Terminal Output. 2-11
2.8 Conditiconal EBranches. 2-12
2.9 The Editor. 2-17
T, THE STRUCTURE OF FORTH -1
T.1 General Remarks. E-1
Z.2 the Stacks. e
J«5 The Dictionary. A-4
Z.3.1 0 Branch Structure. I—4
T.T.2 Header Section. F—
Z2.3.3 Code and Farameter Sections. =14
3.3.4 Expanding and Contracting the Dictionary. Z-17
3.4 Frogram Control —— The Address Interpreter. I-18
2.5 The Text Interpreter. T-27
Z.6 Error Messages —— ABDRT. S
.7 Block Input/Output. 22
Z.8 Forth Assemblers. -2
7.9 Compilation of @ Words. Z-I2
Z.10 Defining Words --— ;CODE. E-3A
Z.11 Branches in & Words. Al
L1101 A Unconditiomnal Branch. AR
Z.11.2 Conditional Branches. -5
%.12 Interfacing with an Uperating System. Z-472
Z.1201 To Stand Alone or Not to Stand Alone. E-42
2.12.2 0S Interfacing Technigues. I—-45
.13 Multiprogramming and Real-Time Applications. F-4é
JEAP DEAR | Friority Scheduling. RIS 1)

TalFL2 FRound-Robkin Scheduling. T—-49
RN PR Scheduling through Operating Systems. I-49

4. FORTH VOCABLLARIES

4.1 Introduction.

4.2 Notation.

4.7 Standard Vocabulary List.
4,4 Special vocabularies.

4.4.1 Standard Editor.
4.4.72 Character Strings.
4.4, % The Extended Editor.
4.4.4 Deferred (perations.
4. 4. % File System.

5. Advanced Topic: Larger Forth Systems.
5.1 Why lLarger Forth Systems?™

5.2 Farth for VYAX~11.

H.2.1 Text Files

5.2.2 Data Width

APFRENDTICES

. FDP-11 Implementation.

E. Forth Bibliography.

[

1o

a1 O S 0 O B

ol e rEn
£

FREFACE

Forth is a computer language and programming style that

produces efficient programs and alleows programmers to work very

productively. At the same time, it is unorthodosx, resistant to
standardization, and difficult to describe. In a profession (and
hebby) Filled with individualists, Forth almost encourages

personal and non~standard computing.

With all its peculiarities and despite its uneven
acceptance, Forth has qrown Ffrom & specialized laboratory
minicomputer system in the early 1970s to a widely popular
language for both mini and microcomputers. Contemporary
implementations range from the smallest 8-bit machines to Id-bit
superminicomputers and even some mainframe systems. Forth
syvstems have found significant application in commercial markets,
but their peak acceptance {in numbers, at leacst) has been in the
pereonal computer world.

This book addresses two needs. First, it provides a motiva-
tion and description for the basic Forth vecabulary, as embodied
in the Forth—7%9 standard. The treatment is concise and directed
toward readers with some familiarity with computing, but it
should be accessible to newcomers with general mathematical back-
grount.

The second purpese of this work is to satisfy the curiosity
and needs of programmers who have developed experience 1n Forth
but who seek a more complete understanding of the imnternal struc-
ture of Forth. With this material., the Forth programmer should

he able to adapt his system to new reguirements, or to recode it

Caltech Forth Freface—2

for different processors.

This description of Forth is based on ten years of
experience at the Owens Valley Radio Observatory (OVRO) and the
Jet Fropulsion Laboratory (JFL) of the California Institute of
Technology. Rased on a presentation of Charles Moore at the U.E5.
National Radio Astronomy Observatory in 1972 and Moore™ s
aseembler—coded IRM T60 version, we undertook a series of
implementations that began with the DEC FDF—10 and the SDRE 920,
The FDE—1¢ was a convenient timesharing development system, while
ans 970 Forth successfully contrelled the OVRD 40-meter radio
telescope for many years.

H. W, Hammond continued with our first DEC FDF-11 s=system,
which still provides control and data collection for the dual 27—
meter radio inter{ermméter at OVRO. Yet ancther generation of
Forth, running uwnder the RT-11 operating system, supports an
OVRN/IFL processor for Very Long Baselaine Interferomatry (MLEIY,
accepting 20 million samples per second of digital data origina-
ting at observatories arcund the world.

Further developments at 0OVRO have led to a distributed
network of more than 7 DEC L8I-11 computers running self-
contained Forth systems under the direction of a central FOF-11
whose Forth system runs under the REX-11/M operating aystem.
Currently, JFPL and OVRO are readying a DEC VAX-11/VME Forth
program to contrel a new generation VLEBI processor handling more
than 80O million samples per second.

A version of Forth for the FDF-11 running under the KT11
operating system is available from the Digital Equipment Users

ey

Spciety (Maynard, Massachusetts). This release, numbered 11272,

Caltech Forth Freface—32

incorporates some, but not all of the features described in this
book.

While developments were occuring at Caltech, Forth was evol-
ving ir wvaripus directions in other user communities. Vocaby—
laries naturally tended to diverge as the larger Forth community
shifted to 8~ and té—hit microcomputers, especially ‘“personal"
computers, while Caltech worked with Forth under operating sys-—
tems and running op larger processors, such as the F2-bit VAX-11.
With the publication of the Forth—-79 standard, however, there has
heen a convergence of veocabularies and syntax, even though the
language retains the flexibility that allows it to expand and
adapt to new problems and computing environments.

I would like to thank H. W, Mammond, PB. H. Rogstad, and J.
L. Vavrus who have been responsible for many of the developments
in FDF-11 and VYAX—-11 wversions of Forth.

Martin S. Ewing
Altadena, Lalifornia

Mav, 19873

CHAFRTER 1
INTRODBUCT IO
1.1 BEGINNINGS,.

In the early 1970s, Charles Moore revealed a new and icono-
rlastic appreoach to programming computers. The environment in
which Moore worked was that of a mational scientific laboratory
{the U.85, National Radio Astronomy Observatory) that was begin-
ning to apply early lé&-bit minicomputers for data cellection and
instrument control.

Programming the new minicomputers was an arduous process,
styled after earlier euperience with second- and third—generation
mainframes (IEBM 7040 and 3&0 series). Since the new small sys-—
tems could not usefully support Fortran or Algol compilers (which
at that time were 1argé1y unswitable for real-time operations),
they had to be programmed with machine language assemblers.
Input would be on punched cards or paper tapes the opsrating
system, it any, would reside on magnetic tape. Frograms would
often be assembled on mainframe computers and transported on tape
or cards to the minicomputer. This process was so laborious, and
debugging tools were so limited, that minicomputer simulator
programs running on mainframes were socmetimes the most efficient
way to check out new programs.

Mocre understood that there should be a better way to pro-
gram small machines. He develaoped a unique set of tools *to
permit efficient progremming. but, maore important, a new stvle of
working, which brought the programmer into intimate contact with
his ohjiect code and the machine on which it ran.

He named his new system Eorth. The mame stands for "fourth

Caltech Forth 1-2

generation” software; one letter had to be removed to fit a O-
character field in the IEM 1130 computer that was used for early
development.

Forth has been refined and transported to nearly all types
of small computers. The language has been adopted in many envi-
ronments besides the scientific laboratory: microprocessor de—
veliopment systems for industry, and personal computers are two

major examples.

. 2 BENERAL CHARACTERISTICS.

Forth exists in numerous varying implementations, bBut a
rnumbar of distinctive features are common to most Forth systems.

1. Interagtion, Forth is at heart an interactive system.
You prepare programs through an on-line editor and are able to
compile them rapidly. This apprcach was almost revolutionary in
Forth’ = early days. Even now, the Forth programmer spends much
less time geing through the mechanics of editing, compiling,
linking, and tezting new‘cnde than does a Fortran programmer.

2. Incremental Compilaticn and Assembly. Forth™s bhasic
units of code, "words," tend to have short definitions — a few
lines each. As you enter a new word definitien, it is natural to
make an immediate test of its operation. Frogram modularity is
gncouraged because words tend to be simple and lpgically well-
defined; they can be tested exhaustively before being used in
higher—-level constructs.

T Reverse Poligsh Notation. The normal location of program

input and output is a push—-down parameter stack. For keyboard

Caltech Forth 1=

input, youu must type parameters before a command word that op-

erates on them. To users accustomed to other high-level lan-
guages, this makes Forth programs somewhat difficult to read. in
practice, bhowever, the transition to Forth™ s parameter ardering

is no more difficult thatn switching from a Texas Instruments
{algebraic) pocket calculator to a Hewlett-Fackard (RFN) wnit.
The push-down stack simplifies communication and facilitates
program re—entrancy, allowing code to be shared between multiple

tasks in & real—-time or timesharing environment.

4. Simple Logical Structure. Only the most basic program
branches and loop=z are provided in Forth. It is difficult and
unnatural to write Forth that is not well-structured. (Unfor—

tunately, this does not mean that all Forth programs are clear!)

S, Extensibility. " Forth has built—in capabilies tor exten-—
gicgn to new data and operation types. List processing and data
bace management are examples of extensions that are possible with
this techniqgue,

&. Mired High- and Low-Level Frogramming. Ferth words can
be defined either as combinmations of basic Forth vocabulary words
{(the '"high-level" approach) or directly as machine—-language in-
structions ("low-level'). In a natural way, you can shift be-
twean compact (and readable) high-level code and very fast mach-
ine code.

7 Machine Independence. High-level Foarth programs adher-—

ing to the Forth-79 standard can easily be transported between

different computer types.

Caltech Forth 1-4

1.7 DEFINITION AND STANDARDS.

Forth is a very personal and malleable language that has
historically resisted being formalized with the precision of some
high-level languages, such as Fascal or Ada. In the hands of an
expert, Faorth can easily be recast into forms which emphasize one
or another desireable attribute, but which lozse compatibility
with "mainstream"” Forth.

Despite its susceptability to rapid evolution, Forth has
been regularized with some success through the work of the "Forth
Standards Team." This private group published the Forth-7%9 docu-—
mert which forms the basis of the notation and vocabulary used in

this book.

1.4 DRGANIZATION OF THE "ROCE

Chapter 2 is an introduction for the new user of Forth.
That chapter and the vocabulary lists of Chapter 4 should provide
vou with enocugh information to begin programming at & Forth
terminal.

Chapter = prevides more detailed descriptions of the
internal mechaniems of Faorth; the presentation assumes some prac-
tical knowledge of Forth, This chapter should help you i1if you
develop or maintain Forth syvstems.

Chapter 4 containe the standard Forth vocabulary, Forth-
7Y, ang additions that have proven useful at Caltech~0OVRD and
JFPL..

Chapter S treats the special problems of implementing Forth
in large-memory systems, including the new 16-bit microcomputers,

such as the Motorola &8000, as well as the DEC VAX-11 series.

Caltech Forth

Appendix A provides details of a FDF~11 implementation,
including a PDP-11 Forth assembler. Appendix B is an annotated

biblingraphy of the Forth jiterature.

CHAFTER 2

FORTH OVERVIEW

2.1 WORDES AND THE LDICTIOMARY.

The central element of the Forth system is the Yword”. A
Forth word is like a subroutine or procedure in other langueages:
executing, or calling. a word causes a definite sequence of
actions to be performed. The reason for calling & Forth routine
a "word" is that it nearly always has a name that is known to the
kevhoard interpreter: it can be evecuted simply by typing its
mame. Thus Forth words are eguivalent to words of text that you

can type on the keyhoard.

NOTE Your must be careful to distinguish a “Forth word",
which is to be erecuted like a subroutine, from a
"memory word", which is a unit of storage (e.g., 1&

bitsd.

Words are defimed in the Forth "dictionary', whichy like
ordinary dictionaries, is a table of word-names and their defini-
tions. Two types of definitions ccocuwr in the Faorth dictionary.
Words may be defined in terms of other words that are defined
earlier., or wortds may be defined by a sequence of machine lan-
guage instructions. Ultimately, of course, all Forth words must
resolve inte machine instructions.

Az a Forth user, yvou type in words or, more precisely, text
strings or "tokens® to your terminal. Forth permits a very

general and free—form input. With few exceptions, any combhina-

Caltech Forth 22—

r3

tion of letters. numbers, or other characters can be used toe name
a word. One character, normally "blank" or "space', is reserved
to separate tokens. A few other characters are reserved to let
you correct errors in typing. Under DEC operating systems "del"”
or ‘“rubout" lets vouw retract the last character you typed, and
OTRL-UY or """ cancels the entire current line vou are typing.
One rule for recognizing Forth word names may be unfamiliar.
Words are distinguished on the basis of their first N characters
and their total length. In many Forth variations, N=Z, while in
the Caltech~-0VRO systeme discussed here, N=4, The number of
characters to recogrhize is a tradeoff between memory savings and

freedom in choosing names. Examples of recognizable and disting-

uishable Forth word names are presented in Fig. Z2.1.
IATDXX. 3 SOME-ARE~LONG
X # (recognizable words)
FOURTEEN SUmM
ARCDEFG fequivalent -= not distinguishable)
ABCDX XX
ABRCDEFG (not eqguivalent —— distinguishsble?
ABCDEF GH

Fig. Z.! Recegnition and Distinction of Forth words.

If wvou type in a token (sequence of characters) that can’t
bhe Ffound in the dictionary, Forth sees 14 it makes sense as a
number. If so, the token is converted from ASCII to binary and
pushed on the stack {discussed below). If you type a string that

i= nmot in the dicticonary and is not a number, Forth issues its

Caltech Forth 2

04

standard error meszsage —— a guestion mark,
2.2 THE STACHK.

Numbers and other data are normally handled throuwgh the
Farth "stack". This is a so—talled "push—down" stack. Such a
stack is a way to store data such that the most recently stored

items are immediately accessible. NMNew data is pushed daown on top

of older items. When an item is no longer reguired, it is "pop-
ped” Afrom the top of the stack, making older i1tems available
AQa1inN. In other words, the push-down stack is a last—-in ftirst-

oult gueue.

The purpose of the stack is to provide vou with an efficient
means of handling data and intermediate results in the course of
a calculation. Labelled variables to hold intermediate data are
not reguired in most cases. Since the space used by the stack is
ashared by nearly all Forth words, there is a considerable saving
in memnory.

Most Forth words eperate on input data you supply on the
stark, pop the input data, and push the results onto the stack.
For simplicity, the Forth convention is that vou must type the
arguments of & function (Forth word) before you type the word
iteelf; 1.8, you must give commands in ‘Yreverse Folish nota-
tion". As an example, the algebraic expression

1+ 2) % 3+ 4

may be written

Caltech Forth

y
=]

2.5 BLOCE STORAGE.

In most practical applications Forth requires an auxiliary
mass-storage device. Various devices such as floppy disks, hard
disks, or magnetic tape, may he used, but some random—-access

technique is required.

The storage device is divided into fixed-length "blocks",
rormally S12 words = 1024 bytes long. These blocks may be used
ag a sort of "virtual memory®, i.e., vou may store data in
blocks when vou don’t have enough room in maln memary. Blocks

are suwitable for holding large amounts of business or experimen-—
tal data, for example. They are also used for the Forth system
iteself: the Forith bBinary object pregram and the Forth source
{(text) for leoading the standard system and for users’ applica—
tions. When a Forth bhlock is used to hold text, it ie caelled a
"srreen. "

Forth handles its transactions with the block storage device

in a simple and device-independent way. Blocks are simply num-—
baered sequentially Ffrom O to some high number. Two bufters 1n
main memory hold the last two blocks you have used. In order to

retrieve a new block, you type BLOCHEX, which takes the number vyou

have put on the top of the stack as a block number, reads the
block into a buffer, and returns the address of that buffer on
top of the stack. I+ there are multiple disk drives in a Forth
syzstem, they are normally treated together as a single unit,

Floppy disk drive "0", for esample, might be accessed as blocks O

-

- 200, while drive "1'" might be 1000 - 1300,
¥ Forth words written in this text will be written 1n capitals
and underscored.

Caltech Forth 2-5

I+ vyou want to change the data in a block, vyou type UFDATE

after BLOCK. Then, before the buffer holding vour bleock is

released for & new BLODE command, it will be rewritten to block

storage. You can type FLUSH to rewrite updated blocks

explicitly.

Z.4 DEFINING MEW WORDS.

The "standard" Forth system has around 200 words defined in
ite dictionary. These provide the functions most commonly needed
in useful application programs. "Writing" a Forth program agt-
uwally consists of defining new Forth words. which draw on the old
vocabul ary, and which in turn may be used to define even more
complex applications.

Forth provides a number of ways of defining new worde. The
language even gives you ways of defining words that define words.
(It iz an extensible language.)

The word CODE permits you to define words whose actions are

in machine— or assembly-language (terms uzed

expressed directly
synonymausly) . COBPE words are clearly machine-dependent, but
they give yvou the means tp get mavimoum execution speed. I+ the

tightest loops of your program are in CRDE words, vyou may find
that your Forth program is as fast as a pure assembler program.
Figure 2.1 shows a typical screen from a FDF-11 Forth system

that contains CDPE definitions. A very simple example iz the one

Caltech Forth

rJ
t
-

-~ - =
...... nn-l-n-nn-.-..:‘.----u---n-a."-u----uq-q‘-.--u...-d.---.----&..u.

123404878901 25454678001 234547890123454678F01 234567801 2345678BF01 224

(SOME FDF-11 CODE DEFINITIONS) ASSEMELER
CODE + §) §)+ ADD, NEXT,
CODE — S) S)+ SUR, NEXT,
CODE 2 § -) §)+ MOV, NEXT,
CODE €2 S) N O 8 2I) MOV, § 3 177400 # RIC, NEXT,
CODE ' T 8)+ MOV, T) §)+ MOV, NEXT,
CODE C!' T S)+ MOV, T ¥ N\ 8) MOV, §)+ TST, NEXT,
CODE OR &) §)+ RIS, NEXT,
CODE AND ©) CDM, S) 5)+ BIC, NEXT,
10 CODE MINUS &) NEG, NEXT,
11 CODE OVER S -) 2 S I) MDYV, NEXT,
T CODE HERE § -) DF P MOV, NEXT,
1% CODE SOR T 8 Y+ MOV, & # T ASH, T 77000 # ADD,
14 &) 28 1) SUR, &) 177700 # BIG, T 8)+ ADD,
15 8) T MOV. NEXT,
16 END-CODE ;8

P2 s TN I Y 1 Y Y [%

Figure Z.1. Typical CODE Detinitions in a screen.

showrn in line 2, for the word +. This definition consists of
only one machine instruction (ADD) with source and destination
parameters that tell the FDF-11 to add the top two stack words
and leave the result on the stack. The notation for machine
instructions and arguments ig peculiar to your particular compu-
ter. (In AFact, there ie little standardization of assembler
syrtax evern among implementations of Forth on the FDPF-11.}) The
basic ("kernel") definitions of most Forth systems will be de—
fined in CORE words.

With the word @ (colon) you can define Forth words in terms
ot other Forth words. Colon definitions are much better stand-

ardired among Forth implementations and are relatively machine

independent. They do not have the full speed of a COD

word, but
they are much easier to write. Colon words often use less memaory
than CODE words.

Most words that are referenced (functions that are invoked)

Caltech Forth

ir

?‘IJ
~d

a @ definition take one memory word. This memory word holds a

pointer to (address of) the Forth word that is to be i1nvoked.

The computer operates in an interpretive mode while a @ word is

bBeing executed: a sequentce of pointers controls the computer.

The

interpreter overbead 15 gquite tolerable in most cases -

ranging from 2 to 8 microseconds for the PDPF-11/40 version.

These figures are comparable to and often somewhat better than

eguivalent subroutine talls 1n assembler language.

In

Figure 2.2 gives an example of the use of colon definitions.

fact, this one screen is a complete text editor for Forth

screens, showing bow succinctly 1t is possible to write useful

applications programs in Forth. The standard text editor is

described more fully in -Sectiocn Z.9.

LS r R v o N I S) I -V I o

[RT SR
AR

—
i

14
13

16

— -

e Y e e e e s L T - -

122454678901 2745467801 234567890 1 23454678901 2345678901 23245679901 5254

{ FORTH STANDARD TEXT EDITOR)

VOCARULARY EDIT EDIT DEFINITIONS

: EDITOR ; : FORGET SAVE-RUFFERS FORGET EASE @ OCTAL
VARIABLE TEXT 7& ALLOT

ELANKIT SFPACES 9 OVER ' DUF 2+ 37 MOVE ;

QTRIMNG TEXT BLANKEIT DELIM ! WORD HERE COUNT TEXT SWAF CMOVE ;
" 47 STRING ;

{{ 51 STRING ;

HOLD DUF LINE TEXT 40 MOVE ;

T HOLD LINE 100 -TRAILING 2 SPACES TYFE ;

FROLINE TEXT SWAR 40 MOVE UFDATE

D HOLD DUF 20 < IF 20 SWAF DO 1 1+ LINE DUF 100 - 40 MOVE
LOOF ELSE DROF THEN 20 LINE BLANEIT UPDATE ;

I DUF 17 DO I LINE DUF 100 + 40 MOVE ~1 +LOOF 1+ R ;

BT SCR & DUF . CR LIST ;

wa ®i gm 34 ky EF wy T2

BASE ' 38

Figure Z.32. Standard Forth Text Editor.

Caltech Forth 2--8
another useful Forth colon definition is &
: . CONVERT COUNT TYPE 3
Here the word . f{(period) is defined as the sequence CONVERT.
COLINT, TYFE, where these words are assumet present 1in the

dictionary when you type in the example. Semicolon (3) 1s a word

with the special meaning: "end ; definition'.
There are other, more epecialized, ways to define Forth
words., Numeric constants can be defined with the word CONZTANT.

For example,
T1415 CONGTANT FI-TIMES-10000

defines the Forth word FI-TIMES-10000. Whenever you type this
word, the constant value 31415 will be pushed on the stack.

Often you find that it is awkward to have all your data on
the stack at once. You can store data in single named memory
words. The Forth word VARIABLE lets you reserve and name such

locations. Type
to define the Forth word 8. When you type @, the address of the
storage location corresponding to @ is pushed on the stack. This
storage area is two bytes long.

If you need to reserve a multiword block of memory for data,
vou can use ALLOT:
This example reserves S0 bytes (including two from the definition
of VARIABLE) named "DATA". When you type "DATA", you get back the
address of the first memory word. You can add an index to the

first address if you want the address of a later word.

Caltech Forth 2
2.5 STORING AND RETRIEVING DATA IN MEMORY.
The word @ (galled "fetch') is provided so yvyor can "read

out" data from any address. You type
waddress.: 2

where <address> is any valid memory address to retrieve the data
stored there. (The data replaces <address> on the stack.) Thus
type
to get the integer in variable (.

To "store" data from the stack into a leocation in memory you
tyvpe

Here <valuer is stored in location <address>, More concretely,

stores a new valug (148) in variable 0. (Ncte that both Ml48"
and € push numbers on the stack. The "store" word [!1 stores the
data away and then pops both input guantitites from the stack.)

Arnother little program might run

In the first line ARC is defined (VARIABLE ARL) and set to the
value 1. In the second, the address of the integer (AR is
placed on the stack, the value at that address is fetched (),
the value is neqgated (MINUS), the address is again placed on the
stack, (ABRC), and the negated value is stored back in the 1nteger

Iocation (i, This is a slow but feasible way to negate an

integer.

Caltech Forth 2-10

2.4 CONTROLLIMNG FORTH —— THE TEXT INTERFRETER.

You normally contral a Forth computer from your terminal.,
The system is idle and listening for anyithing from the hkeyboard
until vyou type in a complete line. When Forth gets a full line
{ended with 'retwn"), it attempts to erxecute the words (ar
convert the numbers) you have typed.

Many times you will want to avaid typing long,. standard, or
repetitive sequences ot words. For ezample, once you have
debugged a new word, vou don™t want to have to type it in again.
The Forth text editor (described below! lets yvou store away the
program in source test form in a hlock (screen). To define the
word, or collection of words, in the future 211 you need to do is
tyvpe

cocreen #> LDAD

i

_QaAk is a word that temporarily redirects Forth™s test
interpreter away from your terminal to the scresn number you
speclfv. Almost any user commands (Forth words) yvou ceould type

directly can be execured from a block wia LOAD.

Each screen to be loaded may end with the special word

e
g
LLE)
-

which restores the text interpreter to the source previously in
effect. I+ 3% is not found, interpretation of the screen ends
aftter the last line. Mote that LOADs may be nesteds; a block teo

be loaded may contain LDADs i1tself.

A screen might contain the following text:

2
=

o

I

+ e
L.OAD
I+ vou were to load this screen, Forth’'s response would be to

convert and push "2" on the stack {(twice), add those numbers, and

Caltech Forth 2-11

tvpe the result (4) on the typewriter. After this, screen number

1% is loaded (with whatever commands are contained there).

2.7 TERMINAL OQUTFUT.

Dutput From Forth normally comes to your terminal. A few
basic worde will suffice for many applications. You can tvpe a
number from the stack with the word . (periaod). Buestion mark 7
u=es an addrese on the stack and types the number that lies at
that address,.

The base used for numeric input and cutput is determined by
the wvariable BASE. BASE may have any value from 2 through 10,
Some implementations allow base 16 as well. The special words
OCTaL, DRECIMAL. and HEX let you set BASE automatically to 8, 10,
or &, respectively. -~ The default number base is normally deci-
mal, but you should check this on your system.

For typing arbitrary strings of characters you may use 1YFE.
TYPE takes two numbers on the stacks

speinter dcharacter count: TYPE

In most Forth systems, a pointer for a character string is
simply the bvte addrezs of the beginning of the string.
Beginning with the specified character, TYFE puts out sequential
characters until the count is satisfied.

In =ome “traditional"” Forth systems, terminal input and
outpuet save space by wsing the same buffer in main memory. To
avoid problems in these systems you should use only one output
word on a command line; yvou should place arn output word at the
end of the command. For example

127 .

436

Caltech Forth 212

typed in as one line will give you only "123" on your terminal.
This ie because the part of the command line containing "45é6 "
is obliterated when Forth writes "123" into the buffer +for

typing.

2.8 CONDITIDNAL BRANCHES.

Forth gives vyou several means to direct the flow of
execution. The methods described here work only within @
definitionsg other similar words are available in the Forth
assemblers.

The csimplest conditional branch is specified by the words
3IN and UNTIL. Consider the following examnple:
: EXAMFLE 1 BEGIN 1 — DUF UNTIL DROT 5

BEGIN signals the beginning of & loop. When the program gets to

the UNTIL {(during execution of EX

XAMPLE) . control will retuwrn to

+
J
1]

jr

im

EGIN if and only if the current stack value is zerm. The
value ic popped after testing Jjust as most Forth words pop their
input arguments.

This is what happens when you execute EXAMFLE: The wvalue 1
1= pushed on the stack and the program enters the loop. Again, 1
is pushed; then subtracted from 1 to leave O. The O values 1is

duplicated (DUF) and tested by UNTIL; then the duplicated value

is pepped from the stack. Since UNTIL found & @, contrcl returns
to BEGIN; ! is again subtracted, leaving —-1. UNTIL finds -1 and
control passes through to DROF where the remaining -1 value is

poppet. Control returns to the calling word, e.g.. to the

interpreter if you were typing.

Caltech Forth 2=-13

The BEGIN - UNTIL construction is useful for program loops

where the leoop termination condition can conveniently be expres-
sed by leaving a zeroc or non—zero value on the stack.

A variant of BEGIN — UNTIL is wuseful for situations in which

the termination condition ig generated in the body of the Ioop.
You may program the following:

« =« « BEBIN . . . “condition> WHILE . . . BEFEAT . . .

I¥ “gcondition® produces a non—zero resdult on the stack, erxecution

continues with the code between WHILE and REFEAT, and the loop iz

repeated from BEGIN. I+ <condition> is zero, the remaining loop

code iz skipped, angd excution continues following REFEAT.

A looping facility more like the Fortran "do-loop" 1is

pravided through the words DQ, LOQF. and +L0OGE. hnother example:

: EX:

e
-3
i

@ DO I

Whern vou execute EX2, the constants 5 and O are pushed on the
stack. 0O takes these numbers ti bhe the limit and initial index
for the loop, respectivelvy. The limit and index disappear +rom
the =tack and are placed on a hidden interpal return stack
stacl. Control pazsses into the loop. The word 1 retrieves the
current loop index value and pushes it on the stack. The value
is typed (and popped) by .. LOOF increments the index value by
1. then tests it against the limit. If the new 1ndex value is
atill less than the limit, control returns to the DO (i.e., to
the peoint Jjust after DO, Dtherwise the limit and index are
popped from the internal stack and control passes out of the loop.

Thus when you execute EXZ, you get

O

1 z 4

k1

typed on yvouwr terminal.

Caltech Forth 2-14

NOTE: The index of & DO stops one short of the limit. The
limit gives the number of times the loop is executed
if the initial index is O. The range of a loop 1is

always executed at least once.

Worde J and E are defined like I to let you retrieve indices

in nested DD loops. In the word EXZ, defined as

r EXZ

-4

D

[Es
4
)

DO £ -1 D01 . J . K . CR LOOF LOOF LOOE :

Hh

2

I retrieves the innermost indesx, d the neuxt outer, and & the

outermost:; CR causzes a carriage return. EXZ should give you the

following output. (Again, each index stops one short of its
Limit.)
-1 1 =
01 3
-1 2 3=
O 2 =
-1 1 4
¢ 1 4
~1 2 4
024

If yvou need an increment other than +1 in youwr leoop., you can
use +L 0F. Here is an example:

£ EX4 ¢ D I . =1 £LOOE

1N

Here agaim O is the limit and © the initial index for the loop.
EX4 proceeds like EXZ, except that +L0O0OP takes the current stack
value to be the lopp increment.

+_00F tests the index in a way that depends on the sign of

the increment; this is a historical peculiarity likely to change

in futuwre language revisions. For a positive increment the test

Caltech Forth 215

is the same as +or LOOF; when the increment is negative, the

loop will run once with the index equal to the limit. Thus the

output of EX4 is

S 4 321 9.,

Variable increments are also possible with +L0O0OF: whatever word

is left on the stack when *+LOOF is executed will be used for the
increment.

The general conditional branch in Forth will he familiar to
users of Algol or FPL/L: an IF - THEM - ELS8E construction.
Aswsume that TRUE-CLAUSE and FALSE-CLALSE are words that have
previously been defined; then define EXS as follows:

r EXS IF TRUE-CLAUSE ELSE EALSE-CLALSE THEN 3

When vyou run EXS, IF tests (and pops) the cturrent stack values

In general, control flows as shown in the fpllowing line -

“vatuer IF dtrue-code> ELBE <false—code>r THEN

In sope cases you aonly need to test for a "true" condition,

LI
: Exé IF TRUE-CLAUSE THEN 3

Here TRUE-CLAUSE is run i+ and only if the current stack value is

non-zero {("true'"). The logical diagram is

Tvalue IF <true-code> THEM

Caltech Forth 216

A more realistic example of a program using conditional
bBiranches might look like this:

2 EUNCTION DUF O 5

1 MINUS ELSE DROP O THEN DUE DUR X X 3

FLUNCTION @ takezs the cwrrent stack value (say) as input and

O if x = (greater than or egual tel) O, and
-x if u o O (Fortran notation)

Let us briefly explain what happens in CUNCTION. The ward <

is a binary function that returns 1 if the next—-to—current stack

value i=s less than the current value; otherwise it returns O,

MINUS replaces the current stack value with 1ts negative, and ¥
returns the product of the top two values.

When you executed FEURNCTION, the input wvalue () is

duplicated (PUF) and tested against O (0O £}, I+ x5 < iy

retuwrns 1, and IF will transfer control to the true-clause

(i

7l

L&y . The current stack value at this time will be i, since
both 4 and lIE will bhave popped the stack. MINUS then negates .

and control bypazses the ELSE clause (the false-clause) and
resumes following THEN. The current stack valwue (-u) is then
cubed (DUF DUF % %), and FUNCTION is done.

On the other hand, if ¥ were = 0, IF would transfer to the
false-clause (DROF Q). Here » is popped and replaced with O,
Control then passes over THEN, 2 is cubed, leaving O on the
statck. Like Fortranm and other common languages, Forth lets vou

nest BEGIN - UNTIL=s, DE - LOOFs, IF - THENs, etc., provided that

the range of a nested loop or branch lies strictly within the

Caltech Forth =217

*
H

range of all the branches and loops that contain it. Far

example,

... DO u.. IF ..« IF ... THEN ... ELSE ... THEN ... LOOF
Nel..=1 2 a X 2 2 i
iz a valid ordering. (Nevte the indication of nesting levels.)

The folleowing is invalids:

... DO ... IE ... LDOF ... THEN ...

In this case the range if the 1E-THEN does not lie within the

Unlike Fortran, Forth does not let you "GO T an arbaitrary
location with a statement label (number). In general, lF is the
only way you have to make a forward jump. The loss is not serious
if vyou take care to nstructure" your programs —-— 1t turns out

that most "GO TOs" are unnecessary.

2.9 THE EDRITOR.

in preceding sections, the Forth block storage scheme Was
introduced. A major use for block storage ise to hold text data,
called screens, of which Forth souwrce code is an example. The
way you can enter and modify teut in Forth screens iz with &
Forth text editor.

Many cdifferent Forth editors have been written. The basic
Forth editor {(EDIT). shown in Figure 2.2, is common to most Forth
svestems; it is very compact but gives you everything you need to
modify text & line at a time. The extended editor used at Cal-
tech (XED includes flexible string manipulations and lets vyou

search for, insert, or delete teut strings anywhere in a block.

Caltech Forth 2-18
Mozt computer systems now support either fast (9,600 baud)
serial terminals, or memory-—mapped display terminals. Such dis-

plays enable vyou to use "screen editors” that show an entire

screen at a time and immediately update the full screen whenever

you change any part. A flashing cursor indicates where you may
enter new text. By typing centrol keys you can reposition the
cursaor at any place on the screen. Screen editors have been
written in Forth, but a detailed description is beyond the scope

of this book.

The standard block length for Forth systems is D12 1é4-bit
worde = 1024 B-bit characters. For us2 as a text screen a block
iz conventionally divided into 14 lines of &4 characters. Diwvi =
sion of text into lines is only for convenient display; as Ffar
as the Forth interpreter is concerned, the é&4th character of a
line is immediately adjacent to the first character of the next
line.

The variable SCR is used to hold the Forth bleock to be

pdited, thus to edit block 35, we type

A
in
I

CR .

If you want to list the entire block 35, you tvpe

4

o LIST.
Az a side effect LIST sets SCR to equal the specified blogk. To

list bBlocks 35 through 40 at once, vou type

Te list just one line (say the 5th) of the current block,

vor type

i8]
il

Caltech Forth

I3

-19

You can delete the second line by typing

2 D.
D deletes the line by moving up all the lines following the one
vou delete. The last lipe (16) should be filled with blanks.

Ta enter new text into a block you first need the special
worde Y or (to put a line of tewt into an internal buffer.
Qunte (") enters all text up to the next gquote into the buffer.
Left parenthesis ({) does the same except that the text line must
be terminated with a right parenthesis (1). Thus

? THIS 18 A TEXT STRING.

and
both place "THIS IS A TEXT STRING" (without guotation marks) into
the buffer. 1f needed, blanks are added to the right ta make &4
characters. Note that, like any words, " and (must have a blank
following i the input. The text string to go into the buffer
begins after this necessary blank. The " or)} that terminates
the text is just a “delihiter”; it meeds no preceding blank.
Once you have got the new texwt entered in the buffer with "
or {, you may use it to replace (R) an existing line or to insert
(I foliowing an existing line. To replace line 7 of block 10
with "FDOD BAR", you could type

10 SCR L ! EQD BAR!

i
m

Ta insert "THIS IS A CUDTE s "r aftar line 12 of block 10
you can type

10 SCR ! (THIS IS A BUOTE: ") 12 1.

Caltech Forth 220

(Here vyou must use the L —) construction to enter a string
containing a quote.) I inserts the line foellowing lime 12 by
first moving limes 13 through 15 down one. The old line 1é4 is
lost.

After a T or D operation the line that was typed or deleted

is automatically copied inteo the internal buffer, ready for a

possible R or I. For example
14 D =1
has the effect of moving line 14 to line Zy with lines 4 - 13

movirng down onge.

After an editing session yvou should be careful that the
updated blocks are actually written back inte block storage.
Forth usually takes ﬁare of this correctly, but vou still may
want to type SAYE-BUFFERE to make certain. You get rid of the

editor by typing FORGET EDITOR, i.e., the editor’s dictionary

space is reclaimed.

CHAFTER =

THE STRUCTURE OF FORTH.

This chapter more thoroughly describes the Forth system.
The reader should be familiar with the preceding chapters and
should have had a significant amount of "hands—-on" experience
with a Forth computer. The presentation is intended for imple-
menters and systems programmers, but it should be wusetul to more
caszual programmers who want to know how to make the most effi-

cient use of Forth.

.1 GENERAL REMARFEG.

It is important to stress that Forth is & complete
programming system, not merely a language. In zome versions,
Forth provides all the software functions of the computer on
which 1t i=s run. This includes preparation of preograms (test
editingl. compilatiaon (or assembly) of programs, debugging and
input/output operations: through direct—access or typewriter
devices. In other versiocns of Forth, including several Caltech-
VRO svetems, Farth rumgs as & process or task under a standard
cperating system. The operating system provides standard

interfaces for /0, scheduling, and memory management.

Forth has been designed arpund certain basic concepts which

aerva to distinguish it from other systems. These include the
dictionary, the address interpreter, and the techrnique of
campilation. Less c¢rucial but =still distinctive features are

Block 1/0, the parameter stack, the text interpreter, and the

asgaemhly technigue.

Forth Mamual T

8]

Buch featuwres do not reaslly define a language. There is a
Forth language., however. In this language concrete words are
defined, suech as +, ELGOCE, and DQ. In this light, Forth may be
compared with other programming languages like Fortran, Hasic, or
Algol. The Forth language could in principle be implemented with
a compiler like a Fortran compiler, and run like Fortram in a
batch processor., Eut Forth's distinctive incremental
compile/debug approach is much more productive and is well suited

to the way real minicomputers are used.

Z.2 THE STACKES.

Modern minicomputers generally have very flexible addressing
methada{ these are heévily uzed in Forth systems. An important
example is the use 0f push-down stacks. Moo=t Forth systems use

two stacks extensivelvy: a parameter stack and a return stack.

The parameter stack? often simply called "the stack'", is the
one most vigible to the applications programmer. It 15 used as
the primary vehicle for input and cutpot data for Forth words.
Usually data types such as integer, double precision integer, and
floating point are intermized freely on the stack. Context
usually suffices to distinguish types.

The push-down stack accounts for the Tunnatural" reverse
Folish motaticon of Forth. That is, all parameters must be placed
on the stack before they are operated upon. Thus the algebraic

EXPression
B2 - 4¥A%C

could be written in Forth as

Forth Manual

£
ol

I
It
¢
I3
I
I9¢
I
I9¢
I
In

The advantages derived from the stack technigque include
simplicity in the compiler, easy addressing at execution time,
economy of main storage, and #ase of providing reentrant code for
real—-time systems. Against such advantages must be counted the
inconvenience, especially for new Forth programmers, of placing
all the arguments before the operators.

The parameter stack is commonly implemented beginning near
the high end of main memory and growing downward toward the

dictionary., which grows upward {(see Fig. J.1).

Foarth Manual A

high limit

F X W oE E N NN NN EARFFEE == 4 4 ¥ B R KRR W N E &

“ return stack
{grows upward)

v
v parameter stack
v {(grows downward)

s
L] - a L] - " *

increasing
memory
addresses

(available space)

- L] Fl - L] a -

N

- user appligation
dictionary
(grows upward)

i} Ystandard" Forth
; dictionary

m m w4 W M N E MR F W W EE N ST N & EFEEEEEEER

! Forth object dictionary
i (kernel)

bBlock buffer 2

block buffer 1

A 2 = B G M M AR E AR EE F T W& S AR EEE T "

»
n

n
n
[}
2
(]
[3
(]
"
L3
a2
]
El
n
n
]
[
n
(3
[3
[
[3
-
a
.
.
[
L]
[
[3
[3
[

lovw limit

Figure Z.1. Memory layout of a typical Forth system.

The "return stack" is separate from the parameter stack: it
is used primarily for the execution of i-words; this application
is described later in this chapter.

Various other information may be placed on the return stack.
This stacrk is mormally used to hold indices and limits for DO
loops. lJsing the return stack for this purpose, the implementer
avoids having the loop information on the parameter stack where
it might lie in the way of data for other calculations.

in the same vein, the word R is detined to take one word

from the parameter stack and save it on the return stack. R: has

Forth Manual -5

the reverse effect.

Z.2 THE DICTIOGNARY.

The Forth dictignary is the heart of the system. All
programse written in Forth appear as words or collections of words
in the dictionary. The organization of the dictionary and the
detailes of dictionary entries differ- between various Forth
implementations. In this Section we will principally describe
the Caltech—(WRD Forth for the Digital Equipment Corporation FDF-

i1.

Z.2.1t Branch Structure.

Forth dictionaries are organized as threaded lists each of
whonse elements ig the definition of a word. The simplest list
structure would have a single linear thread connecting the Forth
words in the order they have been defined. Few Forth systems use
this simple method, since efficiency in search time and memory

space can be gained rather easily.

The dictionary list structure developed for the Caltech-0OVRU

FD¥—11 systems is sketched in Fig. 3Z.4.

Forth Manual I-b

H Q Poa—— H O ' -— . : 0 -
| 1] |] 1 1 e e s o e s g :
1 1 [l 1] 1 | Ml 1 L]
} o parm g I parm | : - i oparm | i
1fields i ifields | : ifields | }
Ve] 1 N r r | —) :
1 1]
i link e i link ol i link P il
e i : b e o e } ; . | —— | '
i parm H : i parm } i Ioparm ' ;
ifields | H ifields | : . 1fields | g
P ———— i : e ' i § i im ' :
L] ¥
jm————— : | jm———— ! i . fom————— H i
i lint A i link b —— i 1intk i
i parm H i I parm d : I parm ! H
ifields | : ifields | g . ifields | :
b e } ' | == ! ' - i i
polind P -1 link) e —— v Lint S Sl
| —————— ! ! j o ——— !) R ' :
i parm H ' i parm H : “ I parm i :
tfields | ; ifields | i ifields o :
| ——— ' g § e H H . H H 1
J ; H
HERAD } e e — f s o e e e e == 4 a e
VECTOR } HERD (0) ' HEAD (1) | ! HEADLIDS)
Fig. 2.2 Dictionary Organiration.

The dictionary is split inteo 14 threads or branches. The branch
in which a word appears is a function of ites mame. Thus to find a
particular word by name, it iz only necessary to search one
branch. {The scheme amounts to a "bash code" for accessing words
by name.)

The bead, or growing end, of the list is definad by a 1&-
element pointer vector. These pointers aim at the most recently

defined word 1in each branch. 8 link +ield in each word

Forth Manual a7

definition is a pointer to the next previous word in the same
bBranch. {The exact target of the link may not be the link af the
previous word; some versions have the link pointing to the
previcgus link plus one, for instance.) Each branch terminates
with & word having zere link field. Definittions in different
branches may be interleaved arbitrarily in memory.

A different dictionary organization hss been adopted by most
Forth users. The principle ig to divide the dictiomary into
branches similar +to those discussed above. In this scheme
the branch in which a given word appears is under control of the
user. The programmer segregates words according to the context
of their applicationg stch groupings are Known =31

“"vocabularies". The words VYOCABULARY and DEFINITIONS control the

kranching. Figure 7.2 illustrates the VOCABULARY technigue.

For-th Manual Z-8

i central :
i vocabulary '
! (FORTH) i
b e e e :
S : S ;
I more : 1 assembl er |
i (FORTH?} ; i vorcabul ary ;
' ' I (ASSEMELER) |
[} [] b e e e v o e o et et v e wrvs 1
S : O — :
i editor g ! more }
I vocabul ary ; i (FORTH) '
i (EDITOR) ; fm e e H -
HEAD (EDITOR) HEAD (FORTH: HEAD (ASSEMBLER)

Fig. .7 VOCARULARY branching.

The number of HEAD pointers is unlimited; each one points to the
last word defined in & dictionary branch. Branches merge asz you
trace back in memory until finally all searches end at the firsat
Forth word in the root (FORTH) segment. A Forth word in one
branch cannot execute (or interfere with) a word in ancther
parallel branch except by explicit arrangement. Thus the
VOCABULARY arrangement gives you some program security and can
eliminate problems with unintentional maltiple word definitions,

There are just two circumstances in which you have to
specity what branch you are using. Most obviously, vyou need to
say what branch the interpeter will search when you type a Forth

word. Only one branch and its HEAD are active at a time. Thus if

EDITOR is the current branch for searching, you cannot type a

Forth Manual =9

t

word defined only in the ASSEMBLER branch. The other circumstance
15 when you are definining new words: what branch should they be
comp:ied into?

The hbranches in effect for word look-ups and for compiling
do not have to be the same. For example, you may wish to uze the
QSSEMQLER vocabulary when you are compiling a CORE word in some
other branch.

We briefly describe the action of YOCARULARY &rid

DEFINITIONS. If vou type

VOCABULARY EOQD

a new branch of the dictionary is formed. The branch leaves the

current dictionary brarnch (FURTH or the last one specified by

DEFINITIEBNS: at its current head. A new Forth word FOO iw
created, When you type EQO. the dictionary branch to be used for
further dictionary cearches is switched to the FOO branch, iy
the one vou’ve just created. Similarly, any time you type FORTH,
ASSEMELER, etc., you switch to the corresponding bBranch.

I¥F vol type DEFINITIONS, the dictionary branch to be used

mpiling is switched to the current branch weed Ffor

Z.3.2 Header Section.

The detailed +Format of a word in the dictionary varies
between Forth implementations. This section describes the format
used in the Caltech-0VYRO FDRP-11 Forth. This format 1s notable in

its very efficient use of memory. Only two memory woards of

Forth Manual T-10

header are reguired in most cases, even when we use 4 characters

plus count for a word name. %

¥Frevious Forth implementations for 16-hit computers Fave
generally required 2 ~ 5 worde for header information and
typically recognized only the first 3 characters plus count. The

Core savings for the Caltech-0VR0O FDF-11 system may exceed

1,000 memory words in a large Forth application.

Each word definition in the lé-way FDF-11 dictionary

containe a "header" which defines the word name (first 4
ctharacters and count), precedence, and the link to the previous
word in the same dictionary branch. These data are efficiently

encoded into twe Ié—bit‘memory words as shown in Fig. Sad

Forth Manual EEh |

BEGIN MACHINE INSBTRUCTIONS
L PARAMETERS

—————————————— EBIT NUMBER ————m e —— s s i
1 1 1 1 1 L A T TR & W T o S & T o T & R SRR
5 4 X O® 1 0 % @ 7 & 05 4 3 2 10
{ i i : '
I 5 I c2 J CxE P C4]} WAORD 1
i ' | i highi
| 4 low Le 'l OFFSET L INi i WORD 2
t] 3] 1
1 1

Firet four characters of word npame:

£1 = Ci* % 16 + THREADS
2, CI. [a

THREAD® (O — 19) i= the thread in which the word
ies found.

Characters are &-bit ASCII codes.

lLength of word names:

L =LY + 4 if L7 <4 O
= 4 if L = 0, C4 <r blank
= 3 if LT = 3, C4 = blank,

C3 <» blank
if L7 = ¢, £4 = C3 = blank,
. 2 4w blank
= 1 if L™ = O, £4 = L3 =
CZ = blank

j
k3

fRange of L is 1 - 11 characters. Names with
identical fir=t 4 characters and lengths greater than or

equal to 11 are indistinguishable.

Fig 2.4 Dictionary Header +for PDOF—-11 (part 1)

("2 =" means "net equal to")

Forth Manual S—32

Frecedence bit:

F =1 immediate execution (compiler directive?
= 0 normal word, may be compiled.

Link to previous entry:

Frevious address = current address — 2 ¥ (eaffset lipk)
(if offset limk <= O)

Freviouws address = long link field
(if offzet link = Q)

Long link field is absent if the link span is less
than S12 bytes.

Fig. %.4 Dictionary Header for FDF-11 (part 2}

Some restrictions on the generality of Forth npames have
allowed the preservation of 4 characterse plus count. The
character set is limited +to the é~bit ASCII subset, which
includes neariy all of the ASCII characters except the lower case
alphabet. The ZF-bit length field (.°) allows lengths of 1 to 10
characters to be distinguished uniguely. Names of 11 or more
characters are allowed, but these will be eguivalent to Forth if
the first 4 characters afe the same. The limitation is slight, as
most practical Forth code has few names as long as 10 characters,

The following are examples of distinguishable names:

A B ABCD ABCE AECEL.
However, the following pairs of names are indistinguishable:
ABCD1 ARCDZ2
ClE2I34567830 ClI2345678701

Even with the 6-bit cnding and the restricted length field,

a Afurther savings in bits is reguired to fit all the header data

Forth Manual Z-13

into two words. This is accomplished easily since a natural
"key" or hash code for choosing a dictionary branch for a Forth
word is one of the characters of the name. In particular the 4

low~order bits of the first character are distributed fairly
randomly and are suited for the purpose. We define the following
function:

THREAD# = HASH{ NAME)

where the hashing function "HASH" is just egual to the pumber
expressed by the 4 low-order bits of the first character of the
"NAMEY =string.

If the HABH fupction is used to select a branch for the word
entryv, the Forth word header does not need to contain those bits
selected by HASH; they would ba redundant. Thus the +tield C1°
in Fig. Z.4 containg only the two highest order bits of the
first character;: the low-order bhits are implied from context,

that is, from the thread number.

One bit of the Forth word hbeader 1s reserved 1 or
"precedence’. Normally this bit is zero, but for "immediate®
wards the bit is one. This bit has special importance Ffor

compilations it 1s discussed below in Section 2.9.

The Ffinal header field congsists of 8 bits reserved for the
offset link. The link points to the last previous word in the
same dictiomary thread. In most cases the memory spanned by the

link is le=ss than 2546 words (512 bytes), o that the offget link

has enough bits. In cases where the link must cover more than
256 words, the offzet link is set to zero and an additional 1&-

bit "long link field" is allocated. The long lirnk field 15 @&

Farth Manual —14

o4

complete byte address that may direct the dicticnary search
anywhere in memory. In the special case of the first word (foot)
of a dictionary thread, boeth the offset and the long link field
are Zero.

F3.%. 7 Code And Parameter Sections.

A complete dicticnary entry containg one or two sections in

addition to the header discussed above. These are shown
schematically in Fig. RN

N £

! HEADER H

; (2 OR % LOCATIONE) |

- FPARAMETER SECTIOGN -
- (OFTIONAL .

' a " N - » t

Fig. Z.o2 General Forth Dictionary Emtrv.

Every word must contain a code section: this is one or more

machine instructicns that are executed when the Forth word i=

invoked. The address of the first location of the code section
iz the one compiled into address sequences in ¢ efinitions (zee
Bection ZE.9). For CODE words, la2.ay those defined by assembly

instructions, the code section is normally the final part of the
dictionary entrvy. It will Finish by "calling" the address

interpreter through executing the instruction NEXT, {(JMF 9 (10 +,

Forth Mamual I-15

see Section Z.4).

Other kinde of words, in particular @ words, require an
additional parameter section in their dictionary entries. In
words the parameter section contains compiled addresses which
direct the execution of the address interpreter. Words detined

hold data.

Some more concrete examples of dicticnary entries for

variagus types of words are presented in Fig. Z.6.

Forthk Manual =14

¥

CODE WORD COLON WORD

! : I JISR IC,®% ... <-— 45378
! MACHINE : e —— !

! INST. CTRS |

: | | ADDITIONAL ;
e : ! WORD :
POIMF D CIC) + : ! ADDRESSES ;
! ADR(SEMI)

CONSTANT WORD VARIABLE WORD
: wEADER E . HEADER }
ISR IC, 9K ... L ISR IC, 9% ...
. ADRC CONGT) | | ADR(VaR >
ovaLoe PoveLe !

(CODE GECTIONS AROVE REFER TO FOLLOWING CODE)

FOF INET. CTR FROM RETURN STALDE
"NEXT" = ADDRESS INTERFETER

SEMI : MOV {F)+, I0
JMF 2 (IC)+

CONST: MOV 2IC, - (5
MOV (R)+,IC
JME B (IC) +

MOVE VALUE TO FARAMETER STACEK
RESTORE IC FROM RETURN STALK
"NEXT"

‘e Az sam

VAR: MOV IC, ~ (SF)
MOV (R +, IC
JMF 2 (IC) +

MOVE ADR. OF VALUE TO FARM. STACK
RESTORE IC FROM RETURN STACK
NEXT"

aE KN s

Fig. .4 Common Forth Word Formats
(Caltech-OVRD FDF-11),
Mote a little trick in the : word: the code section instruction
(ISR IC, d#address) is a double—-word instruction, but the second
location is really just the first location of the parameter field
-~ as Ffar as the Forth compiler is concerned. This address and

those following comprise the sequence that directs the address

Forth Manual S-17

1

interpreter. it turns out that the PDPF-11 instruction JBR
IC, #address has precisely the right action to start the address
interpreter; it saves the instruction counter on the return
stack and directs execution to the code located by the first

address of the address seguence.

T.3%.4 Expanding And Contracting The Dictionary.

The Forth dictionary is initially set up when the program is
first loaded. Thie dictionary and its associated code are
called +the "object program” or "kernel". For Caltech-0VRO
zystems the kernel is defined 1in assembly language. Other
systems sometimes use so-called "Metaforth", which i1s a Farth
program that cross-compiles code from one Forth computer to
generate- a new kernei for another {or possibly the came)
computer.

You extend the dictionary by executing "defining words" —-
words that define new dictionary entries. You can do this
directly from a terminal (typing :, CODE, etc.) or indirectly by
LOARIing blocks that contain defining words. The defining words
have the logic reguired to compute the proper thread number and
to enter a new element in the corresponding dictiomary branch.

At times vyou need to truncate the dicticnary and free up
Memory areas. You do this with FORGET. Type

FORGET HAR
to look up BAR in the dictionary and truncate all branches at the
bighest possible memory addresses lower than the beginning of
EAR.

Thus BAR and all words defined after BAR (in time sequence)

Forth Manual 18

are deleted. Judicious use of FORGET gives you a simple overlay

capability in Forth.

2.4 FROGRAM CONTRDOL —— THE ADDRESS INTERFRETER.

Ancther central element of the Forth system is the function
of the address interpreter (AI), This code directs the execution
of Forth words from address seguences in memory. The normal
termination of every CODE word is an invocation of the address
itnterpreter.

The interpreter operates on a seguence of memory addresses
which lie in consecutive words of main memory. Such an address
sequence is the parameter field of a @ word. Each address points
to the code section of an earlier dictionary entry. (See Fig.

PO —

Talw

Forth Manual Z~19

i HEADER ©"ARBLC" 1 i HEADER "A" ;
| ISR IC, 9% ... | R o1 JSR IC, 9 ... !
{ ADDRESSC A) 1--—mmmm + | ADDRESS (AA) |
(IC)-~->i ADDRESS(B) |---mmmm . : ADDRESS(AR) |
| ADDRESS(C) t-mrst ; ADDRESS (SEMI) |

i HEADER “RB™ i

H e i ISR OIC,DH ...

Forth definitions: ' b e e e '

' ! ADDRESS(B& Y

: A AR AR ; ' e '

: B EA : \ ADDRESS (BEMI) |

: C CA ; ! e e — !
1+ ABC A B C 3 !

' I HEADER "“C" '

e =1 JER OIC, 9% ...

Fig. 2.7 Compiled address sequences.

In each § definition an address sequence specifies the
Forth words to be run when the : word itself is execubted. I.e.,

i¥ ABC is defined

iu

ABC A B C 3, the addresses of words A, B, L,
and 3 are found in the parameter field of AEC. These addresses
define what actions occur when ARC is executed.

We can describe the effect of the AI in the following
general terms. A register (or memory location) is reserved as
the Forth "instruction counter" (IC). Like hardware instruction

counters, IC points to the next ({(Forth) instruction to be

Forth Manual 20

executed. "Instructions" to the Al are just the addresses of
Forth words.

The Forth interpreter must pick up the address that I
roints to, increment IC to peint to the next address in sequence,
and finally Jjump to the code specified by the first addrecss. In
terms of Fig, Z.7, the next invocation of the interpreter will
pick up the address of the word E, IC will be incremented to
pOint to the next address (address of €)Y, and control passes to

the JBR instruction in the code section of R.¥%

¥Most Forth implementations use a slightly different
algorithm for the Al. In these systems, the first word of the

code section is always an address instead of an

[}
H)

instruction, The address in turn points to the actual code to
be erxecuted. Thus the Al jump instruction must be a double
indirect jump. In i1mplementing the Caltech-0OVRO system for
the FDF-11, we found that core and speed savings could be achie—

ved through adopting the.technique described here.

Saveral computers are so appropriately designed that the
entire AI functiaon can be achieved in a single instruction. The
DEC FDF-11 and FDF-10 are exsamples. Fig. 2.8 displays the Als

(NEXT instructions) for 2 types of computer.

Forth Manual I-21

(FDF—-11) NEXT: JMEP D (IC+ 3 IC iz a reqgister
(FDP—10) NEXT: ADJA IC,R0<¢IC)Y 3 ditto
(BOBOD) NEXT: LHLD IC 3 IC is & 16-bit
MOV E,M i double-word
INX H
MOV D,M
INX H
SHL.D IC
XCHG
FCHL

Fig. .8 Address Interpreters for 3 LComputers

The discusesion ta this point tells how the Forth Al
progresses through an address sequence a step at a time. The
linear +low of execution may be modified in several wavs. The
simplest would be to alter IC directly in a CODE-defined word,
and then tn invoke the interpreter.

& more subtle, th more useful redirection of instruction
+low is performed every time a : word is evecuted from a &
ward. Thig is the situation presented above in Fig. 2.7.

#A good way to divert the Al is to store away the contents of
IC on a stack (the returh stack), and to set IC so that i1t points
to the first word of the parameter section of the new word to be
interpreted, (In this way, the A] algorithm is recursive.)

In general, what is the appropriate instruction te put in
the ctode section so that the Al is redirected? Wa need an
instructicn that lets us push & register on a stack and somehow
"remembers" where it is when executed. Usually zsome kind of
subroutine call instruction is appropriate.

As we suggested already, the FDF-~11 has an instruction which
performs all the right operations by itself. With most other

computers youl need to wite a 2 or I word subroutine

Forth Manual z_mno

(conventionally called COLON)Y to redirect the AI. The techniques

tor I comprters are illustrated in Fig., 3.%.

(FDF—-113

Appearance of code section: JSkR IC, 2# ' really one

addressl instruction
address
No subroutine required.
(FDF-10)
Appearance of code section: FUSHJ RF, COLON
addresszsl
address?
Fequired subroutine: COLON: EXCH IC,0dRF)
ALIA IC,DO(IC) 1 (NEXT)H
{2080
Appearance of code section: CALL COLONX
address| : two byvtes
addressl s two bytes
Reguired s=ubroutine: COLON: LHLD IC
XCHE
CALL RFPUSH i (DE)Y ——*RETHE
FOF M y FROM CALL INZT.
SHLLD IC

JMF NEXTX
¥The CALL COLON and JMP NEXT instructions can be replaced
by hardware reset (RST) instructions, with a savings
of Z bytes per use. You must have appropriate code at

the corresponding low—memory locations.

Fig. 3.9 The COLON Function for 3 Computers.

You end & normal 3@ definition with j. The semicolon (37
compiles an address called "SEMI" into the dictionary as the last
entry in the parameter section of the word vou're currently

deftining. (s also resets the compile state.) SEMI 1= the

Forth Manual

address

coL.oN function.

of a machine tade routine that undoes

the effect of the

it must restore the old contente of IC from the

return stack. The SEMI routines for the same 7 computerc are
given in Fig. J. 10,
(FDF—11) SEMT: MOy (RF}+, IC
JME (I + i (NEXT)
(FDF—-10) SEMI: FOF FRF,IC
ACJA IC,20(I8) s (NEXT)
(BOBOD) SEMI: CALL RFOF
XCHG
SHLD IC
JMF NEXT
Fig. Z.10 The GEMI Function for three Computers.
The discussion and figures above indicate that the address
interpreter may be nested very deeply, limited only by stack

In other words,

space, Forth 2
words, which can refer to yet ear
overhead for the Al recursion {or th

another) is seen to be very nomin

conventional subroutine call.

In =smummary we can say that the

engine that makes 3 worde go. The

also uwused in DEC's "threaded code”

combination with +the text inter

responsible for the unigue power of

-

B =
e

THE TEXT INTERFRETER.

In the preceding Section

intaerpreter and how Forth executes

address sequences.

There is ope fundamental Forth

words can refer to sarlier

lier words, etc. The time
e "calling”" of one 3 word by
al —-- about equivalent to a
address interpreter is the
technigque is not news it is
in FPDF-11 Fortran. Eut in
preter {see below? it is
the Forth system.
we discussed the address

I words containing compiled

word (GOX)

Forth Manual =24

whose Jjob it is to interpret what you type in to vour terminal.
This is called the "text interpreter” (TI). It is distinguished
+rom the address interpreter because its input is text Ffrom a

terminal (or bleock) rather than addresses.

¥Boctually GO is an "anonymous’ word (without a header) and can

not directly be accessed from your terminal.

The Tl is really a Forth program in i1ts own right. In fact
it ie the bagsic program that executes in normal Forth systems.
When vyou type in a word ("command") to Forth, it is the TI that
interprets vour command and actually begins erecution.

A structured program (in pseuwdo-cods) +tor & typical TI
follows in Fig. A.11.

GO: IFC Imput is from typewriter 3}
THEN IF{ Text buffer is emply)
THEN Wait for next 4ull input line
from typewriters

IF(Input is from typewriter)
THEN Frepare to read typewriter buffer
ELSE Frepare to read selected block buffer;

Collect & text string {word) from buffer;

IF{ Word erists in dictionary 3
THEN IF(In compile state)}
THEN Compile a pointer to dictionary
words
ElL.SE Execute the dictionary word

ELSE IF{ Imput string converts to a number

in current radis)

THEN IF¢ In compile statel
THEN Compile a pointer to "LITERAL"

followed by number wvalue

EL.SE Push number value on stack

ELSE Abort;

GO TO GO;

Fig.: 3.11 A Structured FPseudo~-code Text Interpreter.

Forth Manual 5-25

We can elaborate a bit on this program. The input to the TI
can be either from the terminal ("typewriter") or +from block
storage. Mothing happens with typewiter input until vou enter a
complete line, ended with “return”. I+ a screen is the input
source, T1 runs straight through without a pause wuntil ;8 or the
and of the screen is encountered,

"Collecting a text string"” means scanning the input source
until a complete word-name—candidate {(token) 13 found. That is,
scanning begins from the cwrent position of an input fText
oointer until the first non-blank character is found. Thern a&all
the mpon-blank characters up to the next blank (or other specified

delimiter) are moved to a special placeX.

¥actually to the next several available dictionary locations in

case this word is to be entered in the dictionary.

Using the appropriate rules for identifying word names with
dictiocnary entries (e.g., first 4 characters plus length), the
TI attempts to Ffind a match with an existing entry in the
dictionary. I+ a match exists, the TI will normally simply
execute that word. There is one case where, if vou tvpe a word,
you don’t want it executed: this is when you are defining a &
word. If yvou are defining a p: word, the TI will store a pointer
to the word in the next available dictionary location.

I there is no matching entry, the T7I will try to see if its
token will convert properly as a number. I¥+ the string does make

sense as a number, that number is normally just pushed on the

stack. I¥ vou happen to be compiling a @ word, the Tl compiles

Forth Manuwal E-26

the number vyou've typed will be pushed on the stack when you
evecute vour new word.

I+ the "word" you've typed can’t be found in the dictianary
or converted as a legal number, the TI gives up and ARORTs. All
the sfachg are raeset, the compile state is reset, the word itself

1% typed again followed by a guestion mark, and Forth starte the

TI all over again.

Zu& ERROR MESSAGES —— ABORT.

The only "standard" error routine in Forth is called ABORT.
ABORYT simply resets nearly everything in the Forth system: the
parameter and return - stacks, the compile/evecute state (to
execute), the terminal buffer, etc. Only the dictionary and the
current state (block contente and update flags) of the block 1.0
svstem are not affected.
erraor message on the terminal: the name of the last word
processed by the text interpreter followed by a gquestion marlk.

The action of ARBORY in a real time Forth system is rnot
standardized. In most situations with Caltech-OVRO Forth, an
ABDRT caused by an error in a background (user—terminal? task
wili not atfect a foreground, real-time task. This is =simply
because the background task only runs when the foreground task is

tinished, i.e., when the foreground task hasz nothing to keep on

the stacks.

Forth Manual I~27

Z.7 RLOCE INFUT/QUTRUT.

Forth normally maintains & single direct-accegs file on

sgcondary storage (such as disk). This storage is not logically
required to run Forth: micro—-computers, for example, may use a
Forth system permanently written in read-only memory. But inp

general purpose minicomputer systems, much of Forth’s versatility
depends on adequate block storage.

The conventional record size for block storage is 1024 8-bit
bytes, or 512 1é-bit words. Blocks are simply nuinbered
sequentially from O thousande are typically available.

Typical systems have two block buffers in main memory. When

vou type

Forth chooses the less recently used buffer, writes its contents
back to disk 1if neceszsary (i.8.. i¥f that block has been

UFDATEd) o and then finally reads in block nnn from disk. The

butfer address is returned on the stack.
Once in main memory, a block may be read or altered in any

WAy . I+ vou want to change a block™s contents gn disk, you must

e swre to type UFDATE following BLOCE. UFDATE sets a flag that

insures that the bufter last returned by BLOCE will be rewritten
to disk before the bufter is reused for come other block. Youl

can type SAVE-RUFFERES at any time to force rewriting of any

UFDATED blocks to disk.

I4 vyou want to be sure that you are dealing with “fresh"

copies of disk blocks, you can type EMETY~BUFFERS before BLOCK.

EMETY-BUFFERS simply sets a flag that marks all block buffers

empty; thus any BLOCE Ffollowing will Fforce a read disk

Forth Manual

o4

|
3
m

operation.

Forth bleocks are perfectly general in the types of deta that
they may hold. However one important use for blocks is to hold
Forth text, i.e., input for the text interpreter. In this mode a
block known as a "screen”, and is considered to be a single
atring of 1024 characters. That is, the text interpreter may
scan the entire block without any division into smaller records
such as lines.

For text entry, editing, and listing, however, it is=
convenient to divide the 1024 character block into 16 lines of &4
characters. The lines have fixed length and there is no
separation (carriage return or line feed) between the last

character of one line and the beginning of the next.

When you type
nnn LOAD,
Forth Fetches block npn. stores the text interpeters input
pointers on the return stack, and sets the irnput pointers to the
beginning of the block. The interpreter will then scan the block
executing words as they are encountered, uwuntil told to de
otherwise, The end of the block or a semicolon-8 {(18) will

terminate the scan on each block.

2.8 FORTH ASSEMELERS.

Section 2.4 described generally how input teuxt can Ee
converted into machine—language instructions. This process is
called acsemnbly. Forth assembhlers for different

computers will naturally differ according to their

Forth Manual 329

instruction sets. The full assemblers for some representative
Forth =systems are presented in the Appendices. This =ection
deals with aspects of aszembly that are comman to

most Caltech-0VRO Forth systems.

You can assemble code any time the system is in the
executicon state, 1a.8., when it is not compiling words.,
Usually vouw assemble code in the couwwse of & CODE word

definition.

The assembler vocabulary congsists mainly of gp-code words
whose names are normally chosen to reflect the conventional
acsembler codes in a macro assembler. In fact the op-code names
are usually Jjust the conventional mnemonic with an appended
comma. Thus the FDF-11 move instruction, MOV, bhecomes MOV, in
Forth.

To assemble & machine instruction into the dictionary. Yot
type the address fields and modifiers yvou need followed by an op-
code word. (Remember reverse Folish notation?) There is normally
a sst of gpecial worids to help yvou set up the correct addressing
modes, branch conditions, etc.

A sample CODE definition for the FDF-11 might look like:s

CODE ADDT © &)+ MOV,

[be

g 2+ ADD, 5 3 © ADD, MEXT;
This word will add up the top 3 nombers on the stack, leaving the
SLAMm.

The firgt part of the definition (CODE ADDI) sets up & new

dictionary entry (header only) with the name ADRDI. The code

section of ADDZ is filled in with 4 machine instructions: a MOV,

two ADDs, and a JMF (expansion of NEXT,). The first instruction

Farth Manual

|

moves the contents of the top stack location to register O and
adds 2 bytes to the stack pointar register. The next instruction
addse the contents of the next stack location to register Q,
incrementing the stack pointer again. The second ADD adds
register O +to the contents of the next (originally the third)
stack location without changing the stack pointer. NEXT, expands
into the instruction JMF 2{(I()+, the address interpreter.

An squivalent MACRO-11 program would look like this:

- WORD HEADEFR1
- WORD HEADERZD

My (5)+,R0 sMOVE STACK 70 REG. O
ADD {(5)+, RO § ADD NEXT STACE VAL. TO RO
ADD RO, (5) sADD TO NEXT STACHE VAL.
JMF ROICY+ 1650 TO NEXT FORTH INSTH.
Forth aszembhlers provide forward conditional branches

similar te the compiler directives JF, ELSE, and THEN. Theze are
the macro instructions IF,., ELSE,, and THEN, (with ,s}. In the
case of the FDF-11, these macrozs zset up appropriate conditional

Branch instructions that test a reqgister. an example:

zload R1x 1 TST,

1=

E IF, <true code> ELSE., false code> THEN,

This expands into the equivalent of the fellowing MACRDO code:

“load reg. 13> sat up data in register 1

TST R1 : test register 1

RED) 1% i branch if equal zero

Ltrue codel s de if R1 JNE. O

BR 2% i branch around false routine
1%: “false codex : do if R1 JEG. O
2%1 . e o= 3y end

The "else clause" is optional, thus you can write

“load reg, £+ & TET, 6T IE, <true code> THEN,

which expandes to

Forth Manual

1%

“load reg.
TST o)
BLE 1%

“true code:

S
e

end

Caltech Forth

d
I
U

2.2 COMRPILATION OF @ WORDS.

The use of ; words has been discussed above and the dict-

iohnary format was presented in Fig. S b. The process of prao=-

ducing a dictionary entry from the input text ig called gompila-

I+
s

on for ; definitions. Compilation is distinct from assem
bly: a term which applies only to CORE words.

Forth has two "states": execution and compilation. In
execution state the text interpreter operates normally, executing
words as they are found in the input teuxt. The word 3 in the
text stream changes the state to compilationg it alsoc invokes
WORD to collect the next properly delimited token from the text
stream. The token becomes the name of the new word; it is placed
in the next available dictionary locations in the correct dic-
tionary format. The link field is set to point to the last-

defined word 1n the same dictionary branch, and the HMEAD pointer

is st to point to the new entry. A call to the COLOM fumction
is placed in the code section. (This is the "half-instruction"
JSR IC,2#%... in the FDF-11 system.)

{At this point in compilation the dictionary formally con-
tains the new entry, which is not yvet fully defined. To prevent
false, premature references +to the entry, H alen alters
Mesmudges") the name Ffield slightly so that the name becomes
unrecognizable. At the conclusion of the defimition, ;3 or ;CODE
restores the correct name.)

It now remains to create the parameter field of the new 3

word. In the compile state, the text interpreter (Fig. Z.11) is

modified =0 that when an input word is found in the dictionary 1t

Caltech Forth S5-Z2E

is pot executed: rather, its address is stored in the nest
available dictionary location. Similarly, numbers are not imme—
diately pushed on the stack, but the address LITERAL is compiled
followed by the literal value of the number. (LITERAL points to
a simple code routine that picks up the number following LIT-
ERAL’% invocation point, pushes the number on the stack, and
increments IC in order to skip to the next compiled address.)
Thus the number is not pushed on the stack until the new word is
executed,

The interpreter will proceed to compile the input text
stream into the dictionary until a "compiler directive" is en=~
coun—tered. A compiler directive is a word with a precedence bit
set to 1. Such words are executed immediately, even when Forth
is compiling.

The most common compiler directive is i which compiles
SEMICOLON into the dictienary and also resets the compile state.
Other compiler directives are IF, THEN, ELSE, :CODE, etc.

If you want to make a word you’' ve just defined into a compi-—
ler directive, simply type IMMEDIATE. (Since IMMEDIATE is itself

immedi ate, you can make a word immediate either by typing "IMME-

DIATE" inside or outside the defimition. For example,

£ X IMMEDIATE A E € ;3 and
i X AEBCg3 IMMEDIATE
are equivalent.)
Z.10 DEFINING WORDS —— DOES:.

A special technique is available in Forth to define words

whose function will be to define words. Some of these "defining

Ealtech Forth A—34

words” are built into the kernel: CODE. 1. CONSTANT, etc. A new

defining word is appropriate whenever a new class of word func-—
ticons is required. The avaeilability of defining words makes
Forth an unusually extensible language system.

As an example take VARIAERLE, which is defined in the stan-

dard 'syst@m. The new class of words provided by VARIABLE con-—-

sists of words that push the address of their parameter field on

the stack. N may be defined a VARIABLE by typing

The dictionary entry created for N is shown 1n Figa. el

i Address (var) !

! value (=) H

Fig. Z.12 Dictionary &ntry for VARIABLE M.

The entry differs from an entry produced by CONSTANT only in the

address that appears in the second word of the code section. all

VARIAELE words will have the address "var" in this location.

This code must pick up the address of the parameter field of the
variable word being esecuted and then push it on the stack.

VARIABLE may be defined in terms of the more fundamental

Forth words CREATE and DOEG:

: VARIABLE CREATE DOES: i

The definition has two partsg the first is like a normal

Caltech Farth I35

definition. Word names appearing here are compiled into the

dicitionary. The

jur

part of VARIABLE contains only CEEATE.

CREATE makese a new entry in the dictionary (when VARIABLE is

iecuted). The name of the new entry ise taken from the token in

the input stream that folliows VYARIARBLE, Ffor example, "N" in the

case above.

The second part of the example begins with DOEE:>, DOES: is &

compiller directive that compiles an address (called doesr), but

beope the system in compile state. Feollowing DOES: are more words

to be compile. These instructions define the address sequence

("variable"? which will be associated with all VARIABLE words,

When this address seguence is interpreted (when "N" is edecuted,
for example), there will be a single parameter passed: the add-

rese of the parameter field of the VARIABLE word. In the case of

VARIARBLE . that parameter is exactly the desired result of the

VARIABLE word; therefore, only the terminating definition, 3 is

required.

The dictionary entry +for VYARIABLE is shown in Fig. B

Caltech Forth I-=4

var: VMOV IC, - {5F) H

<~- insert longer address seq.

WHat happens when we execute VYARIABLE?Y First, CREATE malkes

a dictienary entry usimg the next token in the input stream as

=)

its name ("N", for example, in Fig 3.12). At this point, the new

dictionary entry has an undefined code section. The code addres-—
sed by "does>" causes the cede section to be filled in with a
"J8R IC,@#var” instruction. When the new word (M) is executed,

the "does start"” code will collect the parameter field address of
M, which the JSR instruction has placed on the return stack, and
push it on the parameter stack. This code furthermore starts the
Address Interpreter running at location "var" with the correct
return stack contents so that after the terminal 3 is inter-
preted, at execution-time {(of N), contraol returns correctly

through the Address Interpreter.

The code routipe "var” for any VARIABLE word works in the

following way. When N is executed (for example}, "var'" pushes

the contents of register IC on the stack. (It turns out that the

Caltech Forth - 7

"IGR IC, dHver" instruction pute the address of the first word of
the parameter field in that register.) The code must now restore
the last generation of the IC from the return stack. In general
there will be further Forth words compiled in the

section, 2o the Address Interpreter is invoked through the usual
JSR mechanism. In the case of a VARIABLE word, however, there is
nothing further to do, and the address of “"semicolon'” terminates
the address sequence.

To =zsummarize, CREATE and DROES: are used to create new code
routines which are associated with a defining word. ALl words
defined with that defining word will employ the new code routine.
Thug a new Forth word class 1s defined.

A w&rd closely reléted to DOES: is ;ECODE. You may use ;LCADE
tee make a defining word for a class of words whose action 1s
enecified by an assembly language routine. The parameter +ield

-

address is passed in the same way as for DRDOES>. Thus an alterna-

tive definittion of VﬁﬁlﬁﬁLE would be

The associated code routine is mull i this case. Figure Z.14

Faltech Forth B-E8

header

i "VARIABLE"

VA PoMOv IC, - (8F) '
MOV (RF) +, IC :
§ o e e VA== dnsert further maching
P JMP 2 IC) + ; instructions

Fig. Z.14 Alternate Dictionary Entry for YARIAELE.

Defining words may be established to define any data type or

operation class; examples include YAERIABLE, ARRAY,

SET, etc. IR
a class of fived repetitive operations can he identitied it may
be mozt economical of storage and execution time to create an
appropriate defining word. An example with CONSTANT: the line

1 CUNSTANT ONE
defines ONE as a constant word that will push the value 1 an the
stack. This will always be more efficient that using the number
1 iliterally. {In the text interpreter the number conversion 1s
avolded, and in a compiled definition the call to LITERAL is not
neaded.)

In practice we use the name "1" instead of ONE. Thus the
dubious detinmition

1 CONSTANT 1.
0f couwrse, vou could also defire I with the fellowing line
LI B S

but this way two extra storage locations are used -— for LITERAL

Caltech Forth A

and +or SEMICOLON. Because of the return stack operation and the
extra interpreter cycles, execution of the ; defined 1 would be

much slower than the CONSTANT word,.

Z.11 BRANCHES IN :; WORDG.
Z.11.1 An Unconditiconal Branch.
An unconditional branch to any Forth word is provided by the
EXED function. You type
waddress value:r EXEC
to Jump to the address specified. If the address is that of a
Forth word, you could type
% =word pame:x EXEC.
(% returns the code section address of the word whose name fol-
lows. Note that in nDA_Caltech—DVRD systems, the word ° gives

the right addrecs. In the Caltech-0OVRDO system * returns the

address of the parameter +ield.)

3.11.2 Conditional Branches.

lee of the branches IF, BEGIN, etc. was described in Chap-—
ter 2. The discussion here concerns the dictionary entries
produced by these words and the state of the stack during

compilation.

Consider 0=, which might be defined

1T
HH

iF © ELSE 1 THEN 3

Thie word tests the value passed to it on the stack; it the
value is non-zero, rero is returned. Zero input produces pne.

The compiled dictionary entry for 0= is presented in Fig. 3.13.

Caltech Forth E—40

i address (XIF) '

i address = 2% '
1%: i address (1) ;
o o e ot e e S ST e A o e n e o o e e o mem :
2% i address (SEMICOLONY |

Fig. %.15% Dictionary Entry Illustrating IF.

The word=s IF, ELSE, and THEN are compiler directives: they
are not compiled in the 0= definition, they are executed. Their
execution does compile word addresses and address constants,

howewver . The word addresses are shown in the figure as XIF and

XGEF. which actually control branching at execation time.

The example illustrates the operaticn of IF - ELSE - THEN
SeqUances, The address interpreter begins with the address XIF.
XIF tests and pops the stack. A false outcome (zero) will re-
gquire a branch to the "false ciause”, 1B the words compiled

between ELSBE and THEN. The branch is carried out by loading IC
with the contents of the location following the address XIF
("1%"}). The interpreter continues at that location, pushing 1 on
the stack.

The "true clause"”, between IF and ELSE. will be esxecuted if

the stack tests true (non—-zero). In this case XIF simply incre-

“altech Faorth Z-41
ments IC sc that the interpreter skips over the addrese 1$. Zero
is pushed on the stack. The interpreter then encounters the

address XS5EF which unconditionally loads IC with the contents of
the following location (2%). Finally SEMICOLON terminates execu-
tion of either case.

Cther +orms of compiled branches work like IF, THEN, etc.
Fig. Z.16 is the dictionary entry of a typical DO - LOOF con-

astruction:

: LF 4 O D0 RANGE LOOF AFTER &.

P JER IC, D4 d

1%: I address (RANGE) d

Fig. Z2.1&6 Illustration of DO - LOOP.

A few peculiarities should be explained. We assume that O is

detined by

as discussed above. However 4 is not so defined in this exampl e;

Galtech Forth -4

it i=s treated the way arbitrary numbers are. Thus LLITERAL must
be executed with argument 4 to get 4 on the stack. (IC increments
atter LITERAL picks up its argument so that the interpreter
resumes with the @ word. KRANGE and AFTER are just random words
predefined in the dictionary.

XEG takes the top two stack variables (O and 4) and pushes
them on the return stack as discussed in Chapter 2. Execution
proceeds with RANGE. XLOOF i1ncrements the loop index. checks the

index against the limit, and sither branches back to RANGE (by

lopading IC with 1%) or skips to AFTER.

.12 INTERFADING WITH AN OFERATING SYSTEM.

A controversial topic among Forth users is the rele of
general ﬁurpmge mneratigg cystems. The computer vendors supply
operating systems with varying levels of function and complexity.
Generally their purpose is to allocate, schedule, and promote
sharing of computer resources for a single task o- for several
concurrent tasks. The'queetiun iz whether the function, stan-
dardization, and economy of the operating systems are worth the
aoverhead in speed and memory for particular Forth applications.

Caltech—~DVRD systems have been developed both with and with-
out {5 support, In this section we consider some criteria for
these choices. These topics will bhe taken up again in Chapter o

when we consider large—memory Forth systems.

F.12.1 To Stand Alone (r Not To Stand Alone.
We can attack the problem either economically or technical-

ly. in economic terms, the price of computer memory (particular-

Caltech Forth T~4%

ly semiconductor memory) is falling rapidly. lLow cost periph-
erales such as floppy disks are widely available. These techno-
logical forces tend to reduce the economic penalty for relatively
large,. general purpose operating systems.

In contrast, the cost of software development steadily
rises. So there is an economic incentive favoring wtilization of
off-the~shelf software systems when possiblie. Reinvention of
compler scheduling and 170 algorithms is rarely justitied.

Technical analysis is more difficult. One {prominent) line
mf thinking is that much can be done with extremely simple soft-
ware. Thus Forth standalone systems with mipnimal multiprogramm-
ing. no concurrent I/0, and practically no error recovery capabi-
lities have been very successful. The same thought process leads
to the ididea that practically all computing can be handled by

Forth programming on 16 bit computers with no more than 32K

mamory words. {(Thus the mapping problem for larger memories 1S
avoided. }
With standalone Forth, cross assemblers {(such as MetaForih)

can be developed that generate systems with nearly identical
structure Ffor widely different types of computer. Maintenance
and development effort are reduced accordingly.

Technical arguments for Forth running under operating sys-—
tems have a few major themes: concurrency of large tasks, relia-
Bilitye and trancportability. Frogramming for many large Jjobs is
simpler when large amounts of memory are available. Memory is
cheap. 16 bit computers can give you instant access to 32K words

or more; =0 why mot allow each task in the system to use up to

Caltech Forth

A

-44

this amount?

The difficulty with large tasks in a multitasking system iz
that physical memory has to be mapped into the 32K task address
SpACEe. The mapping problem 1= fairly severe if you reguire
efficient use of physical memory and CPU time. Vendors® operating
systems usually cope with this problem; development of gener-—
alized Forth memory mepping software is a nontrivial project.

Concurrency of large tasks may include non—-Forth tasks. For
example a Forth real-time control task may have to co-exist with
Fortran data reduction. This is feasible i+ bath tasks run under
& common cperating system.

Reliability of a software system is bhard to define. One
wseful principle is that a software fault in one task of the
svstem should be isala£ed from other tasks. Commonly this fea-—
ture is provided by memory mapping and by carefully defining
nser— and system—-states of the CRU. Again, it is a major effort
to provide these functions in standalone Forth.

Another aspect of fhe reliability problem is what to do in
the event of hardware faults. Large peripheral devices (particu-
larly disks) can be very compled. Many operating and error
recovery modes are available. The manufacturer®e device driving
software {(a component of operating systems) becomes correspond—
ingly elaborate and difficult to repeat in Forth.

Orne hindrance to the wider propagation of Forth has been
that many implementations are censtructed using the MetaForth
crose-compiling scheme. Forth detined in terms of Forth is
difficult to learn and difficult to tranmsport to a non—Forth

computer. Implementations in the standard assembler code of =1

Caltech Forth =45

particular machine can easily be transferred to other machines of

the same type, particularly if standard file structures and

formats are ocbaserved.

Za1

3

2
a

05 Interfacing Technigues.
Implementation of Forth as a task uwnder an operating system

such as RT-11 or VAX/VME is generally simpler than as a stand-

alorne system. The 08 provides macro instructions for terminal
and disk I/0. Buffering and error checking are provided by the
0s.

When you have to connect non—-standard 140 devices or respond
toe special hardware interrupts, the =situation is a little more
complicated. The general purpose operating systems necessarily
restrict your freedom of interfacing with sxternal devices, since
the system’s integrity must he preserved for other syatem useres.
In particular for RT-11 vou must carefully ohserve the interrupt
protocols with appropriate use of the . INTEN and -5YNCH macros.

Of course any macro defined in the conventional aszemhlers
can be expressed in terms of the Forth assembler, Untortunately
standard Forth lacks a true macro-processing capability, =0 that
it is difficult to define macros with the generality available in
the conventional assembler. The problem is not too bad, =ince
you rarely need more than a few types of macro in a given Forth
application. VAX/VYMS Forth (Chapter S) has an interesting Forth-

Pased macro capability.

Caltech Forth Z-d4

To1T MULTIFROGRAMMING AND REAL-TIME APFLICATIONS.

In real-time control or data acguisition jobs it is often
necessary for a Forth system to interact with external devices on
a prescribed time schedule, Eals sample data every 10 msec or
uwpdate telescope drives every 0.5 cec. You usually want to be
ablie to converse with Forth in a normal way while the real-time
processes are running. In =ome cases, unrelated users may want
to share the computer at the same time.

All such situations reguire some multiprogramming scheme.
Multiprogramming is the general technigue of sharing the compu-—

ter*s time, MEMOrY 4 anrnd peripheral devices between multiple Jjob

tasks or users. A number of schemes bhave been used for Forth
multiprogramming. Most Caltech-Q0VRO systems use a mulitilevel
priority scheduling system. Other Forth systems use a round-

robin scheduler, especially for multiuser "timesharing” applica—
tions. When running under a multiprogramming operating system,
independent copies of Forth may be run as separate tasks under

the operating system.

Z.13.1 Friority Scheduling.
i simplified priority scheduling algorithm is used in sev-

eral Caltech—-0OVRD systems. Figure 2,17 illustrates the method.

Caltech Forth S-47

(recurrent interrupt)

; #1 i

i interval T2 I (nod
i elapsed? f—————- =

Voipterval TS i (nod
i elapsed”? b o s o

I

#N i

i return from
i interrupt
]

Fig. 3.17 Priority scheduled Multiprogramming.

A recurrent interrupt (say &0 Hz) initiates the "foreground
taske" shown in the figure. Task 1 contains all the Functions
to be performed every interrupt. When task | is completed a
counter is examined to see if a predetermined number of inter-—
runpts has been processed. I+ the interval TZ bhas elapsed, the

counter is reset and the lower level tashk (#2) begins. If T2 has

Caltech Forth Z—48

not elapsed, A return from interrupt instruction is performed:
the "background” {(e.qg. Text Interpreter) then has the use of the
machine until the next interrupt.

This multiprogramming technique lets you set Wup an arbitrary
number of execution levels each of which is initiated after a
certain integral number of instances of the next higher level.
I+ +the interrupt return information is stored carefully, the
foreground structure is at least partially reentrant. The level
1 task may interrupt the level 2 task many times before level 2
completes. You must inswe that there is enough time for each
task level to complete befpre it is next scheduled to run.

Advantages of this priority scheduling methed include the
minimal context switching requirements, simplicity, and guararn-—
teed servicing of high priority tasks. The context that has to
be preserved when entering a given foreground level is just the
general registers including the Forth instruction counter IC, and
the hardware instruction counter. If disk and terminal I1/0 are
to be allowed from more that one execution level, then ceparate
buffers must bhe maintained,

A lower level task in general does not have to be aware of
the existence of higher level taghks, except that higher level
tasks effectively slow down the computer. I+ a low level task
hangs up in a loop, higher level tasks will still execute.

Froblems with the method include the awkwardness of multi-
level IsQ, the requirement that the basic Forth routines be
reentrant, and that the programmer must see that the completion

time of an execution level never exceeds ites scheduling interval.

Caltech Forth I~-45

J.17.2 FRound-robin Scheduling.

A second popular Forth multiprogramming scheme is the round-
Fobin. As the name suggests, the principle is to allow one task
te finish, then to begin the next in a chain. After the last task
irn the chain completes, the first beging again.

The method is well suited to an environment with multiple
users all baving equal claim to the computer. Ferformance de-
grades gracefully as more tasks are added to the loop.

Proper operation of the round-robin regquires that tasks be
"cooperative", 1i.e. willing to relinguish rights to the CFU in a
timely way. A task does not have to complete its total function
before it allows others to execute, but it must release control
freqguently so that response time to other users is acceptable.

The. Found-—robin ig not well matched to real~time <ituations
in which guaranteed response to external events is required. It
also lacks "robustness" in the tace of any user who wants to

monopelize the CFLL

22133 roheduling Throuwgh Operating bystems.

Multiprogramming facilities are available in most general
ocperating systems. These range from simple foreground-bachkground
(dual task) systems like DEC s RT-11 to +ull-scale priority
scheduled systems like REX-11. For a price, the RSX-11 system
will give you priority scheduling, time—-slicing between tasks of
similar priority, and memory protection between tasks. Az dis—
cussed in the previous Section, vou save implementation expense
but suffer greater memory and CFY time overheads to implement

Forth multiprogramming through operating systems.

CHAFTER 4

FORTH VOCABULARIES.

4.1 INTRODUCTION.

In this chapter we present definitions of some of the most
useful and most standardized Forth words. The vocabulary in-
cludes the Forth-7% standard, as well as the Double Number Word
Set and the Assembler Word Set that were published in the Forth-—
77 document. Also included are words that are used in the Cal-

tech Forth versions.

4.2 NOTATION.

The styvle of notation in this chapter follows the AST.OL
dmcument-(see Bibliograﬁhy)u

Words are listed in "alphabetical" sequence, based on the
ASCII character set. The action of each word is described in
concise forms: f string of symbeols that tells which parameters
should bhe placed on the stack before the word iz ewsecuted; the
word itselfs then, any parameters that the word leaves on the
atack. A parameter appearing to the right of ancther on the

gdetinition line is meant to be abpove the other on the parameter

stack.

Caltech Forth 4-2

The following symbols are uszed:

b Block or =screen number.

= 7-bit ASCII character code.

f Flag: ©O=False, non=-zero=True., All words which
return a2 flag return O=False or 1=True.

mon op

qr = 16-bhit integers (or addresses)

U v oW Doutile-precision (2 cell) pumbers.

nnpn pppp Names of words.

S555 A =tring of chararcters.

VWY A vocabul ary name.

Freceding a verbal descripticn of each word, certain charac-
ters may appear in parentheses. These denote some special action

or characteristics, as follow:

C The word may be used only within & colop-definition. A
following digit (CO or C2)Y indicates the number of memcry
cells used when the word is compilled, if other than one. A
following + or — sign indicates that the word either pushes
& value onto the stack or removes one from the stack during
compilation. (This is not related teo its action during
executicon.)

Y The word is not part of Forth-79.

Caltech Farth 432

4.

*
in

STANDARD VOCABULARY LIST.

mp !

Stores word m at address p.

Y smsssg”

(V) Enters a string of wp to &7 characters inteo buffer

TEXT f{or onto string stack in XED) for use by editor.

Thig word ig in editor vocabularies only. Note that =
rnull message (zingle blank between "} is not
permitted.

% onnnn op

(V) Like * (below)., except returns the address of the

code section of nnnp.

ronn R
Called "tick". Tick leaves the address of the
parameter field of nnon. This is a "smart" wordj

inside a colon—-definition, it produces code that causes
the addreszss to appear on the stack at execution time.
The colon definition

i opeee I nnon o
is egulvalent to

» pppe [7 noon 1 LITERAL 3.

(sEs5)
Ignores a comment string terminated by a right
parenthesis. A single blank between parentheses is not

allowed.

Caltech Fprth 4-4

£/

X¥/M0OD

+L_00F

. CODE

mn ¥ q

154-bit integer multiply with sign.
mn p ¥/ g
Leaves gq= (min)/p. Retention of an intermediate IZ-bit
product permits greater accuracy than the otherwise
equivalent seguence: mn X p /.
mmn p X/MOD - g
L.ike %X/, except leaves both remsinder (r) and quotient
(). Has full I2-bit intermediate accuracy.
mn + q

14-bit integer addition with sign.

mp +!
Adds integer m to value at address p.

m +L.0OOF

(C) Adds m to the loop index, I4 m>0, the loop will
terminate 14 the new index eguals pr passes the limit.
I+ m<0, the lpop will terminate if the new index passes
the 1limit. Loop index checking is unsigned; this
allows proper operation with 1é6-bit addresses > 32747,
LU

Stores m into the next available dictionary cell,
advancing the dictionary pointer by two bvtes (one
word) .

m L CODE nnnn

(V) Begin a code definition named nnnn as for CODE.
Allow space for m cells for parameters before beginning
machine code. (" nnnn will give the address of the

first reserved parameter.)

Caltech Forth 4—

~TRAILING

SMAD

|

mn - g

16-bit signed integer subtraction g=(m—n).

m n ~THAILING m p
Eliminate trailing blanks from a text string beginning
at address m) with initial length (nd. Returns

original value (m) with new length (m).

Types the wvalue on the stack as a signed integer,
converted according to the cuwrent number base (BASE) .
If the wvalue is negative, types a minus sign; if

positive, types no sign.

() Transmits a meszage of up to 127 characters delim-

ited by Y to the selected ocutput device. Note that =a

null message (single blank between "s) iz not
permitted.

mn 4 q

ibh-bit integer divide, g=m,nN. The quotient ie

truncatedy; any remainder is lost.

mn AMOD r g

i16-bit signed integer divide, qg=m/n. The guotient (aq)
is lett on top of the stack, the remainder {r) bensath.
The remainder has the sign of the dividend (m).

m &4 f

ipaves a true flag) i1+ {(m) is negative.

m Q= f

(VY Flag (f) is true if (m) is zero or negative.

Caltech Forth g—g

0 x

OSET

1+

1+

15ET

m O<x F
(V) Flag (£f) 1is true if (m}! is non-zero.
m O= +

Flag (£) is true i+ (M} 1s zero.

Flag () is true if (m) is positive and non-zero.

(V) Flag () is true i+ (m) is greater thanm or egual
Zero.

p OBET

(V) Gtore zeroc at lecation p.

m 1+ g

Increment value (m); g=(m+1).

p o1+

(V) Add 1 to the contentes of address p. Eguivalent
p 1 SWARP +1,

m 1- a

(V) Decrement variable (m); g=(m—1).

p 1SET

(v) Store one at location (p).

wp 2!

Store ZI2-bit variable (u) at location ipl.

(V} Double variable (m)j; g=2¥m.
m 2+ q
Add two to variable (m); g=m+2,
m Z— q

Subtract two from variable (m); g=m-Z.

to

to

I2-bit number

Z2-bit number

Em); g=m/s2.

(u) Ffrom location (p).

(nnnn) which will push

(1t} from the user stack

to the

22-hit wvalue

a A2-bit variable from the top of the stack.

ta DROF DROF.

a 32-bhit variable on the top of

to OVER OVER.

(w) from the return

3 E2-bit variables, similar to ROT.

Caltech Forth
27 m Z/ g
{V) Halve variable
2<R w 2R
Move the
Feturn stack.
2 p Za ou
Fetch 22-bit value
ZCONSTANT v ZCONSTANT nnnn
Detines Forth word
() on the stack.
ZDROF w 2DROF
Eliminates
Equivalent
2DUF uw ZDUF u ou
Duplicates
Equivalent
2R IR u
Move the 2
the user stack.
2ROT u v w ZROT v w u
Rotates
2EWAF u v 28WAF v u

Exchange the top two F2-bit variables,

the stack.

stack from

gimilar to SWAF.

Caltech Forth 4-8

2VARIAEBLE

FVARIABLE nnnn
Detine a Forth word (nnnn) which returns the address of
a 322-bit quantity contained in the parameter field.

Like VARIABLE, except that four bytes are reserved.

79-8TANDARD

ar

;: CODE

79-5TANDARD
I+ this word exists, and can be executed successfully,
a minimal Forth—-7% system is guaranteed to be

available. No parameters.

: nnnrn
Create a dictionary entry for a colon—definition, set
compilation mode, and set the context vocabulary

equivalent to the current votabulary.

L1

(V) Switch mode from compilation to execution.
Compiles a word address that, at executian, will
restore IC and branch to the code heginning after =,
I+ the code ends with NEXT, the retuwrn will be correct.
Example: H MNMNNN ... HEE {assembly instructions?
.. NEXT,

(0 Terminates & colon—~definition and stops
compilation.

;s CAODE

(CY Stops compilation and terminates a defining word

(nnnn}. Switch the ctontext vocabulary to ASSEMBRLER in

Caltech Forth 45

anticipation of a machine—code seqguence. When {(nnnn)
ies subsequently executed to define a new word (ppppl,
the erxecution—address of {(pppp} will point tao the
machine code sequente following the ;CODE of (nnnn).
Then, subsequent use of (pppp) (or any other ward

defined by nnnn) will rcause this machine—code sequence

to be executed. The assembly language eguivalent of
DOES>.
1 5]

(V) Stops interpretation of a Forth screen.
mn < f
Flag {f) is true if (m) is less tham (n), in the sense

of 2°s complement, lé&-bit arithmetic.

(M} Flag £} iz true i+ (m) does not exceed (n)y in the

sencse of 2's complement, 16-bit arithmetic.
Flag {(#) 1 true 1+ (m) is not equal to nl).
Flag () is true if (m) is egual to (n).

Flag (+3 is true if (m) is greater than n), in the

sense of 27s complement 16-bit aritheetic.

nx
&
1

(W Switch mode from execution to compilation.
Assembles instructions that save IC and begin the

Address Interpreter just after 3. I+ the compiled

Caltech Forth 410

IN

?DUF

ARORT

code ends with 3, the return will be correct.

Example: COPE nhnn ...

aaw {compiled Forth
words) ... ;

Note that &z and ¥ can be used freely in either CODE
ar detinitions.

mn = f

(V¥ Flag (£} 1s true if {(m) is greater than or equal to
in) in the sense pf 2's compiement lé-bit arithmetic.
=IN m

FReturns the cuwrrent character offset (m) in the input
text stream, range 0 ~ 1023,

m *R

Fushes {(m) onto the return stack. GSee R>»,

e

#]

Frints the value contained at address p in free format,
according to the current base. Equivalent top @ . .

m PDUF m [m3

If value (m) is non—zero, push a copy of it on the
atack.

P @ g

Called "fetch", leaves the contents () of memory
address (p).

ARORT

Enter the abort sequence, clearing all stacks, printing
a simple error message, and returning controcl toc the
terminal .

m ARS g

Leaves the absolute value of a numbear.

Caltech Forth 4-11

ALLOT n ALLOT
Allocate (n) bytes to the parameter field of the most
Fecent Forth definition.

RAND m rn AND g

Fitwise logical AND aof (m) and (n).

ASH n m ASH r
Arithmetic¥ shift, result (r) = (n) X 2xkx{m). I+ m>x0,

i to left; m-0, to the right.

¥4An arithmetic shift is a shift in which the sign bit ig
"sticky”: it never changes when data are shifted left. When data
are shifted right, the sign bit is copied into successive bits to
the right, but the sign itself never changes. In a logical shift

the =ign bit is treated‘like any other.

ASSEMBLER
ALRSEMBLER
Switch the context vocabulary pointer SO that
dictionary sparches will begin at the Assembl er

Vocabul ary. tThe Assembler Vocabulary is always chained
te the current vocabulary.

BASE BASE p
BN integer pointing to the current conversion base
value.

BEGIN BEGIN
(Co+) Mark the start of a BEGIN — UNTIL or EREGIN -
WHILE - REFEAT loop. The words between BEGIN and its
corresponding termination will be repetitively euecuted

until the termination condition is satisfied. Loops

Caltech Forth 4-312

EE! L

BLK

BLOCK

BEUFFER

5]

may be mested.

BELL

Activate terminal bell or tone.

BLE p

An integer, equal to the number of the block being
interpreted or zero if input is coming from the

terminal.

b BLOCK p
Leaves the address of a buffer containing Block (b,
I+ the block is not already in memory, 1t is

transferred from disk or tape into whichever core
buffer has been leacst recently accessed. If the block
occupying that buffer has been updated, it is rewritten
on disk o \tape before Block (b)) iz read into the
butfer,

b BUFFER p

bhtains a core buffer for block b, leaving the first
buffer cell address. The block is nogt read from disk,
and is automatically marked as updated.

mp !

The low order B bits of (m) is stored at the byte
address {p)

P C2 m

The 8-bit byte at address (P} is returned in the low

order part of (m). The high arder bits are cleared.
i C,
Compile the low-order byte of n into the dictionary and

increment the dicitionary pointer by one EByte.

Caltech Forth 4—1=

CHAIN

eMave

CODE

COMFILE

CHAIN wvvwvv

Connects the current vocabwlary to all definitions that
might be entered into Vocabulary (vvvy) in the future,
The current vocabulary may not be FORTH or ASSEMELER.
Any given vocabulary may be chained only once, but may
be the object of any number of chainings. For example,
every user—defined vocabulary may include the sequence,
CHAIN FORTH.

m n r CMOVE

Move {(r) bytes from area beginning at bByte address (m)
to area beginning at hyte address (n).

CODE nnnn

Creates a dictionary entry for a code definition named
(nnnn}, and sete the context vocabulary to Aszsembler.

m COM o

Leaves the one’s complement of (m).

COMFILE (non-standard parameter!)

This word provides a way to cause specific data to he
compiled into the dictionary. When COMPILE executes
{it must be called from within a colan definition), the
l6—bit word pext following in the address sequence is
picked up. This data is not pushed on the stack (as
LITERAL would da), but it is =tored at the newt
available dictionary location, and the dictionary

pointer is incremented accordingly.

e

Example — if X is defined by : X COMFILE [© o 1 1.

then executing X compiles a "0O" at the current

Caltech Forth 4--14

CONSTANT

CONTEXT

CONVERT

COPY

COUNT

dictionary location.

m CONSTANT nrnn

Creates a word which when executed pushes (m) onto the
stack. (8ince the "constant" (m) may be modified by
the sequence: g ' nnnn ! it as oftentimes
advantageous to define a variable as a constant,
particularly i1f the variable is accessed more often
than it is modified.)

CONTEXT p

AN integer that indicates in which vacabul ary
dictionary searches are to begin.

u p CONMVERT v q

Convert an ASCII string beginning at memory I1pcation
{pi+l to a double precision integer according to BASE,
Add the result to (ul. The sum is returned as (v, and
the addresse of the +irst character that could not be

converted is retwned as (gl.

m n COFPY
(V) Copy the contents of block (m) into block () and
mark block (n) as updated.

p COUNT {p+1) n

The count-byte (n) is extracted from the first byite of
a message string beginning at address (p), and left on
the stack. The string address is incremented by one

to point teo the first character of text.

Caltech Forth 4-15

R

CREATE

CURRENT

D

D.

D=

ER

Transmit carriage return/line Ffeed codes to the
selected output device.

CREATE nnnn

Creates a skeleton word detinition with name (nnnn).
As 1nitialized, this word will push the address of the
parameter field on the stack, althoungh no parameter
field space is reserved by CREATE.

CURRENT p

An integer that indicates the vocabulary into which new
words are to be entered.

v D+ ow

Double precicsion (Z2-bit) addition; w=u+y,

u v D— w

Double precision {(3Z2-bit) zubtraction; w=su-v.

u DL

flatput a Z2-bit value according to current wvalue of
BASE.

un DR

Output a 2Z2-bit value according to current value of
BARSE. Aligr output in a field of (n) characters in
width.

u bo= F

Return (£) mnon—zcero if (0} 1is non-zero.

w v DA

Flag (f) is true if (u} is less than (v) in the sense

ey

of I2-bit, two’s complement integers.

Caltech Farth 4—-14&

D= u v D= f
Return npn-zero value of (f) if u=v.
DARS u DARS v
Feturns (v equal to the absclute value of (L.
DASL wom DASL v
Arithmetic ZZ-bit shift left by (m) places. (M must be
positive.
DABR v m DASK v
Arithmetic E2-bit shift right by (m) places.
DATAN u v DATAN w
Retuwrn (W) = Arctan {1/ v) presserving guadrant
information. The recsult is an angle eupressed in
Binary Angular Measure (BAM). %
;;;_5;;;;;m;;;;1ar Measure, O degrees = 0, 0 degrees = 40000(8),
180 degrees = -—-180 degresg = (000008, etc. In this wav, a

fraction

of a turn is represented with the grestest possible

accuracy by a sigrned integer.

Dcos w DCOS v
Compute (v) = copsineluw), similar to DSIN,

DECIMAL DECIMAL
hets the numeric conversion base to decimal mode. {Set
BASE to ten.)

DEFINITIGMNS

DEFINITIONS
Sets the current vocabulary {(inte which rew definitions
are placed) to the context vocabulary (the vocabulary

currently being used for searches).

Caltech Forth 4-17

PEFTH

DMAX

DMIN

DNEGATE

bo

DOES -

DEFTH n

Leaves the number (n) of 1lé-bhit words currently on the
stack, before (n) is pushed on.

u v DMAX w

Return (w) equal to the larger of {(u) and (v), treated

=%

as IZ2-Dit two’s complement values.
tov DMIN w
Return (w) egual to the lesser of (W) and (v}, treated
as IZ-bit two's complement values.
W DNEGATE (—u}
Leaves the negative of a 3IP-bit quantityg two’ s
camplement .
rnom DI
(€) PBegin a loop, to be terminated by LOOFR or +LO0OF.
The loop index begins at {m}, and may be modified at the
end of the loop by any positive or negative value., The
loop is terminated when an incremented index reaches or
exceads (nYy oOr when a decremented inder becomes less
than tn). Within a loop, the word 1 will place the
current index value on the staclk.

Evecution of DO places three Farameters on the
return stack: The starting locaticpn of the loop,. the

index limit, and the index.

DOES -
(L) Terminates a defining word NNnn . which can
subs=equently be executed to cefine a new word (PPRR) .

Subsequent use of (pppp) will cause the words betwoen

DOES = and 3 to be executed with the parameter—-field

Caltech Forth 4—-18

DROF

DEIN

DEORT

D+

DLIMF

DUF

EDITOR

ELSE

EMIT

address of (pppp? on the stack. Further explained in
Section Z.10.

m DROF

Drop the topmost value $from the stack.

W DSIN v

FResult (v, scaled i1in the interval -1 —— +1 (binary point

to the right of the sign bit), is the =ine of angle ()

in BAM.
w DSERT v
Return v, the sguare root of (ul. (L) must be a

positive value.

u v DU f

Returns () non—-zero if (b} is less than (V) in the
sense of I2-bit unsigned integers.

m o DUMF

Pump {n) memory cells beginning at address {(m). Dump
ig ip current number base.

m DUF m m

Feturns a duplicete of the topmost stack value.

EDITOR

The nmame of the Editor Veocabulary. I+ that vocabulary
is loaded, EDITOR establishes it as the context
voarabulary, thereby making its definitions accessible.
El BF

Frecedes the false part of an IF-ELSE-THEN conditicnal.
c EMIT

Send character (¢) to the current output device.

Caltech Foarth 4--19

EMFTY-BUFFERS

END—-LODE

EXCHAMNGE

EXECUTE

EXIT

EXFECT

FILL

EMPTY-BUFFERS

Marks all block-buffers as empty, without affecting
their actual contents. Updated blocks are not flushed.
END-CODE

Terminate an assembly-language CUODE definition or
series of definitions, resetting the context vocabulary

to CURRENT. Bee ASSEMBLER.

m n EXCHANGE

(V) Exchange the contents of hlocks (m} and (n) and
flush.

p EXECUTE

Execute the Férth deftinition whoze code address is (pl.
EXIT

Heed in A colon detinition, EXIT forces an immediate

termination of execution of the definition. Not for
used in DO — LW constructions.
pon EXPECT

ook for a sequence of up to (nN) characters to be input

fram the current terminal. Store these beginning at
address {p). Ari input "retwn" character will
terminate the sequence sarly, if ercountered. One or

two "null" characters {(zerp bytes) will be appended to
the sequence in mamorvy.

ponom FILL

Treaat (m? as a byte value and store (n) caopies of it

inte memory starting at address (p). Do nothing if (n)

Caltech Forth 420

FIND

FORGET

FORTH

HERE

HE X

is less than or equal to zero.

FIND p
Segarch for the word whose name is the pext "token" in
the ftext input stream. I+ the word can be found in

either CONTEXT or FORTH vocabularies, leave its address
(p)s otherwise leave zero.

FORGET nnnn

Delete the word {(nrnnn) and all dictionary entries
following it. Although $nnnn) must be in the context
vocabulary to be found, the words that follow it are

deleted no matter which vocabulary they belorng to.

Normally, FORGET shouwld not be uzed within a colon-

definition, as 1t is pot a compiler directive.
FORTH
Make FORTH the context vocabulary. Hince FORTH cennot

be chained to anvthing, 1t becomes the only vocabulary
that is searched for dictionary entries.

HERE p

teave {p), the address of the next available dictionary
location.

HEX

Switch the number base to hexadecimal.

I m

() Fush the topmost retuwrn stack value onto the user
stack without disturbing the return stack. Typically I
15 used to return the indes of an innermost DO-loop.

but it can also be used to access values pushed onto

Caltech Forth 4-221

IF

IFEND

IFTRUE

IMMEDTIATE

the return stack by R,

¥ IF ... ELSE ... THEN or
f IF ... THEN

{CZ2+) IF is the first word of a conditional. I+ ¥+ 1s
true <{non—-zern}), the words following IF are executed
and the words following ELSE are not executed. The
ELSE part of the conditional is optional. i+ £ is
falee (zero), words bhetween IF and ELSE, or hetween IF
arnd THEN when no ELSE is used, are skipped. IF-ELSE~
THEM conditionals may be nested.

IFEND

Terminates a conditional interpretation segquence begun
by IFTRUE.

£ IFTRUE ... OTHERWISE ... IFEND

Unlike IF-ELSE~THEWM, the=se conditiecnals may be employed
during interpretation. In conjunction with £ and 1,
they may be used within a colon—-definition to control
compil ation, although they are not to be compiled.

These words cannot be nezsted.

IMMEDIATE

{2V} Set the precedence bit of the word just defined in
the dictionary.

Jom

(e I+ the current DO — LOOF is nested within another
DG - LOOF, J may be used to obtain the index of the

auter loop.

Caltech Forth 45

E . om
¢2) I+ the current DO — LOOF is nested within two DO -
LODPE, K will retuwrn the index of the outermost loop.

KEY HEY
Return the next character available from the current
input device.

LEAVE LEAVE
Fauses the termination of a DO - LOOF (+LOOF) the next
time the index is checked. This is done by adjusting
the limit value stored on the retwn stack.

LINE m ILINE p
Leaves the character address (p) of the heginning of
line {m3 for the block whose number is contained at
R,

LIST b LIST
List the block (b)) as 1& lines of &4 AGLII characters on
the selected cutput device. Set SUR to (b).

LITERAL n LITERAL
Compile the address of the code routine called LITERAL
followed by the value (i) into the dictionary. When
the currently defined word is executed, (n) will be
pushed on the stack.

£.0AD b LOAD
Bagin interpreting bhlock ().

L.0aF L.Oar
(C) Increment the DO-loop index by one, terminating the
loop i¥ the new index is egual to or greater than the

limit.

Caltech Forth H4-07

[-SH

MAxX

MIN

M !

HaD

MOVE

NEGATE

NEXT,

n m LSH »

Logical shift left (m) places. {m) may be negative.
m n MAX q

Leaves (q), the greater of (m) and (n).

m n MIN q

Leaves (), the lesser of (m} and (n).

ME!

(V) Mark the present value of DF. Eguivalent to HERE
MEVAR). Usetul in assembler programming for passing
parameter addresses. See MESD.

MED n

(V) Obtain the value of DF that was last marked with
P Equivalent to MEVAR 2. Example: ME? 127454,
CODE nnn § —) MED P MOV, NEXT, This FDF-11 routine
will push 12345& on the stack,

m n MOD r

Leaves the remainder of {(m)/(n), with the same sign as
{(m).

P g n MOVE

Moves the contents of (n) 1é-bit words beginning at
address (p) into (n) words beginning at address (o).
The order of transfer is lowest—first.

n NEGATE (—n)

Leave wminus the number (nY on the stack, two's
complement.

NEXT,

(V) An assembler word that may be used to terminate a

Caltech Forth 4224

NOT

NUMEER

aOCTAL

OFR

GR!

OTHERWISE

OVER

CODE word. It invokes the Address Interpreter. In
OVRO PDF-11 versionsy, NEXT, azgembles a "jump indirect
through IC and increment ICY instruction.

m NOT ¢

Invert a boolean condition. Equivalent to 0=,

NUMBER

Convert a character string left in the dictionary buf-
fer by WORD as a number, returning the result in regis-
ters, internal temporary locations, or on the stack.
The appearance of characters that cannot be properly
interpreted will cause an error exit.

OCTAL

Set the number baseg to octal.

r 0.

(VY Type n a5 an unsigned occtal number, regardless of
current value of BASE. See 0.

m n OR q

RBitwise leogical inclusive OR:; g=m oF n.

m p OR?

(V) Form the leogical OR of (m) and the contents of (p).

Btore at address (p).

OTHERWISE
An interpreter—-level conditional word. See JFTRUE.

mn OVER m n m
Copy the stack value (m) wunder the top value (n) onto

the top of the stack.

Caltech Forth G4--25

FAD

FAGE

FICHE

PRINT

FRINTER

QUERY

auIT

FAD p
Leaves the address (p) of a &4-byte buffer that is used

for intermediate storage during some string processing
functions.

FAGE

Elearzs the terminal screen or performs a similar action
on the current terminal.

rn FICK m

Returne (m), the {(m)-th stack valueg beneath the current
top stack value, not counting (n) itselsf. (2 FICHE 1is
equivalent to DVER.)

p n FRINT

Transmit (n) characters to the selected output printer
starting at cheracter address (p). which will have been
placed onn the stack or in an internal register by
COUNT .

FRINTER

Select a hard-copy printer as the output device for all
output directed through EMIT or PRINT. See TERMINAL.
GUERY

Accept input characters from current input device and
place into terminal buffer. Input is terminated by a
"raturn® tharacter or by the transmission of o0
ctharacters.

auIT

Clear the retuwrn stack, Jorce execution mode, and
continue by interpreting text from the terminal. No

error message results. This is & "softer" reset than

Caltech Forth 4-24

ABORT.

R R> n
Fop the topmost value from the return stack and pusk it
onto the user stack. See »*KH.

R Ra n
Take the top value on the return stack and push on the
user stacks the return stack is not altered.

REFEAT REFEAT
(L) Signifies the end of a loop in & BEGIN - WHILE -
REFEAT loop. Causes control to pass to the point just
following BEGIN.

ROL n m ROL r
Rotate (n) }eft (m) places. Bit 15 (the sign) rotates
into bit O, If (m) is negative, the rotation is to the
right.

ROLL ulnd win-13 +a. will n ROLL wuin—-13 ... wlill ulnl
Extract the (n)-th value from the stack, leaving it on
top and moving the remaining values into the vacated
position. The depth of the stack is unchanged. (I ROLL
is equivalent to ROT; = ROLL 1= equivalent to SKWAF; 1
ROLL is a null operation: O ROLL is undefined.)

ROT mmnp ROT nm pm
Rotate the topmost three stack values o that the
previous top value becomes the cecond; the second

becomes the third; and the third becomes the top.

]
é

n SHDow

Convert & 1&6-bit number (n) into a 3d-bit mumber {(u) by

Caltech Forth 427

extending the sign to the left.

SAVE-BUFFERS

SEMI,

SET

STGN

SFACE

STATE

SAVE-RUFFERS

Write &ll blocks that have been flagged as "updated” to
gdizk or tape.

BCR p

FRetwrns the address (p) of & variable that indicates
the most recently edited screen.

SEMI,

(V) Thiz worcd must be used to terminate ;CODE words,.

m p SET nnnn

(V} Defines a word (nnnn) which, when executed, will
cause the value (m) to be stored at addresz (p).

m rn SHOW

(VY Type blocks (m} through (i) at the terminal, 3 bleocks

to a page (for bardcopy terminals).

n SIGN

I+ (n) < 0, .put a minus siagn ("""} into the pumber
output string.

SPACE

Sencd a blank character to the curvrent ouiput terminal.
m SFACES

Send (m} blanks to the current cuiput terminal.

STATE p

Returns the address (p) of a variable that contains the
flag that indicates whether the input text stream is
being compiled or erxecuted. A noN—zero value

correcsponds to the campilation state.

Caltech

SWAE

SWAF

TERMINAL

THEN

TYFE

Li%k

L/Man

Forth 4-28

n SWAE m
(V) Exchange the left and right bytes of (n).
n m SWAF m n

Evchange the topmost two stack values.

TERMINAL

Select the terminal as the cutput device, cancelling
any previous selection of the printer.

THEN

(CO-) Terminates an IF-ELSE-THEN conditicnal seguence.
m n TYFE

Transmits (n) characters to the current output device,
starting at the character address (m). See COUNT,
FRINT.

mn Ux u

Leaves the unsigned 22-~bhit prodoact, {u), of two
unsignetd 1&~bit numbers, m) and (n).

m i,

Type (m) as a lé-bit unsigned nmumber according the
current value of BASE.

N U/MOD r g

Leaves remainder (r) and guotient (g} of the result of
an unsigned division of the Z2-bit value {(u) by the 146~
bit value {(n).

m n U F

Like <, U< compares (m) and (n) and returns a flag that

iz true {(non—-zere) if m < n; however, Lthe comparison

Caltech Fo

£

LINTIL

UFDATE

VARIARLE

VOCARULARY

Fth 4~29

treats the inputs as unsigned values ({(integers in the

range O — &GLEDS).
mn U= f
Like <=, but an wunsigned comparison.

mn Ur +
Like >, but an unsigned comparison.

mn Ux= +

It

Like =, but an unsigned comparison.

+ UNTIL

o) Signals the end of a BEGIN — UNTIL lmop in & colon
detinition. If (¥ is true (non-zerol, the loop is
terminateds; if not, grecution continues at the +irst
word following the corresponding BEGIM.

LFDATE

Flag the most-recently referenced block as updated.
The block will later be transterred automatically to
giek if its buffer iz needed to store a difterent

klock. Bee SAVE-RIUFFERS.

VARIABLE nnnn
Crreates a word (nnnn) which, when executed, pushes the
address of a variable onto the stack. Two bytes are

reserved to hold the variable.

VOCARUILARY vvvv
Deftine a vocabulary name. Subzequent use of {(vVvvv?)
will make (vvvvy) the context vocabulary. The sequence

VWY DEFINITIONS will make (QVAVAVAVY . the current

Caltech Forth H--Z0

WHILE

WORD

XOR

CCOMFILED

vocabulary., intoc which future definitions are placed.

¥+ WHILE

If {(f}) is true (non-zerol), execution proceeds normally
in a BEGIN ... f WHILE ... REPEAT loop - through to the
REFEAT is encountered. After REFEAT, execution loops
back to the word following BEGIN. I (£} is +alse,
however, execution skips out of the loop,. to the word
foellowing REFEAT.

o WOIRD p

(CN) Read the next word from the input stream, up to 63

characters or until the delimiter (c) is found, storing

the packed character string in an internal buffer. The
address (p) points to the beginning of the buffer. The
first byte of the buffer contains a count of characters
in the buffer. The buffer 1is terminated by an
pccurence of (o), or by a nmull (O).

m n XOR o

L.eave {(gl, the.bitvwise logical exclusive OR of (m) and

{rn).

Stop compilation. The words following the left bracket
in a colon—definition are executed, not compiled.
Fermits celculations to be made during compilation.
CCOMFILED nnnn

(C) Force the compilation of the word (nnnn)d. Thiz is

the way to compile an "immediate" word.

Caltech Forth 4-70

3 3
Resume compilation. Worde following the right bracket

are campiled.

4,4 SPFECIAL VOCABULARIES.
Of the vocabularies presented bere, only the standard editor
is generally used outside of Caltech-0VRO systems. The others,

however, are freguently used in our local systems.

4.4.1 Standard Editor.

The "standard'" Forth editor is a very simple editor based on
substitution of fixed-length lines in the fixed—format block.
There are 1& lines of 64 characters in each Forth bBlock. The
following vocabulary is available with the standard editor.

" " oesss"
Copies string {ssss) into buffer TEXT. String is
padded to the right with blanks as needed tc make &4
characters.

¢ { ssss)
Copies string {ssss) into TEXT like ("), except that a
right parenthecis [)]1 serves as the delimiter.

BI_K BLE
An integer that specities the number of the block
(screen) you're currently working with.
Example: Type 144 BLE ! +to edit block 144.

BT BT

Type the current block. Eguivalent to BLKE » LIST.

Caltech Forth {32

D n D
Delete lime (n) from the current block and move lines
(n)+1, (N)+2, ...4 1& down one line. Linme 1& is fFilled
with blanks. The old contents aof line (p) are moved
into buffer TEXT.

I n I
Lines {n)+1, (ny+2, . 15 are moved down one line.
(Lime &6 is lost.) The contents of TEXT are moved intao
line (n)+1.

R n R
The contents of TEXT are moved into line (n).

T T

Type line (n).

4.4.2 Character Strings.

Character string manipulations are a central part of more
spphisticated text editors. Standard Forth has no explicit
support of strings. The following vocabulary is one approach to
praoviding string handling in Forth.

Variable length character strings (0-467 characters) may be

placed on a special string stack {(which has & Ffixed masimum

depth). Various operations, prefixed by ("), operate on this
stack.
L It 5555”
Fuiish a literal string (ssss) onto string stack.
Similar to " in standard editor. In compile mode:

Compile g5z inte the dictionary with a call to a

Caltech Forth 43
string literal routine that will push ssss ontao the
stack at execution time.

i {{ ssEs)

Like " except the delimiter is). (¢ lets you enter
quotes in a text string.

~TRAILING ssss —TRAILING ttit

String {(tttt) is (ssss) with all trailing blanks removed.

=STRINGS
revr ssss =STRINGE |
Compare strings {(rrrr) and (ssss), return (£3=1 if
equal {including in length), O otherwise.

" smss p !
Fop (ssss) from the string stack and store at location
{p).

Y p "Y sses
Get string {(ssss), located at (p}, and push it on the
string stack. {Byte O of the string is its lengih.?

" EN "—LEN n |
Get length (n) of second string on string stack.

"o cn "C!
ASCII character () replaces (n)-—-th character of top
string.

g n "Cd c

Retrieve (n}-th character from top string, push idts
ASCIT value () on Forth stach. Character 0 is the

string length.

Caltech

"CAT

"CLR

"INDEX

"ILERN

PLEN!

"L INE

"LINE!

"NUIL L

"FAD

Forth 4324

rrrr sess "CAT thtt

Strings (rrrr) and (ssss) are concatenated to form
strimg (tttt).

"CLR

Clear the string stack. Motes the string stack is not
cleared by AROKRT.

ss5ss tttt "INDEX m

Search string (ssss) for the first occurrence of (tttt

a8 & substring. Returns character position of match if
found, O otherwise.
"LEN R

Get length (n) of top string on =tring stack.

n "LEN!

Set length of top string to (n). Equivalent ton O
",

n "LINE ssss

String (ssss) is drawn from line (n) of the black whose
rumber is in BLH. Trailing spaces are deleted.

ssss n "LINE!

ftring (ssss) is stored in line (n) of BLE. Blanks are
added to the right to make &4 characters.

"NULE ssss

Push null string (zsss) (length O) on string stack.
rerr ssss 0 "FAD bttt

String (rrrr}) is padded to the right using the +irst
character of (ss558) so that the resulting string (tttt)

is (M) characters long.

Caltech Forth 4-~-25

"ETRING ssas "HETRING nrnn
l-ike CONSTANT, define (nnnnl, which, when executed,
will push (ssss) on the string stack.

"SURSTR
ss=s n om "SUBSTR tttt
New string (tttt) ig the substring of (ssss) beginning
at character (n) and ending with character (m).

"SUBRSTR! rrrr sesss nom "SUBSTR! tttt
Result i1s string {(rerr) with string (sss5) inserted
instead of substring {(n) through (m) of (rEry). The
length of ({(ssss) does not have to eqgual the length aof
the substring to be replaced.

"TYPE sess "TYFPE

Type (ssss) and pop off string stack.

4.4.7 The Extended Editor.

The Forth Extended Editor (XED) is a superset of the
standard editor developed at Caltech. In addition to the line-
at—a-time commands, 1t allows vyou to search for character
strings, alter strings identitied by context, etc. XED uses the

Character bBtrings vouabulary described above.

FT ssss FT
Find the first ocourrence of (ss5ss5) beginning at the
current line number (L#) in the current block (BLE) and
tvpe the wheole linmne containing the string. I+ a match
is not found in the current block, continue at BLE + 1§

etc. (Yol have to type Z ETRL-Cs to stop in RT11 o

Caltech Forth 4246

RSX11.2
Example: " THIS" FT to find the first occurrence of
"THIEY in or after the cuwrrent hlock.
FR rrrr sses FR
Find the Ffirst occurrence of (rrrr) in the current

block beginning at the current line; replace it with

(woeg) . The resulting line is truncated &t &H4
characters,
Example: "THIS" " THAT" FK to replace the first

oocourrence of "THIS" with "THAT".

I sess FD
Find the first occocurrence of (s585) in the current
block beginning at the current lines delete this
substring of the line. Fad the line btack +to &4
characters with blanks.

FI rrrr ssss FI
Find the first cccurrence of (rrrrd) as ahove; inzert
{sssa) immediately following (rrrr). Truncate the line

at &4 characters.
HT n HY

Hold line (m) of current block on string stack and type.
HF n HR

Replace line (n?) with the string on the stack (like R),

but save the old contents of line (n}) on string stack.
HD rn HD

Delete line (n) {iike P}, but hold its former contents

on the string stack.

Caltecth Fortk 437

HI

LT

BT

L7

i1

HOLD

UNHELD

+R

ENTER

n HI

Insert string on line following (n) {(like Iy, but hold
old contents of line 14.

LT

Type current line number and line.

BT

Type current hlock. Reset line number to 1.

L?

Type current line number.

i1

et current line to 1.

n s HOLD

Fut lines (n? -~ (m) of current block on string stack.
n m LINHOLD

Replace lines (n} — (m) from string stack.

+R

Increment BLE by 1.

-k

Decrement BLE by 1.
ENTER

Eeginning at the current line of the current block,
insert text exactly as typed. Each line is terminated

by the user typing & carriage return, which fills out

the current line with blanks and advances L#. Typing
more than &4 characters between carriasge returns
results in a "hell"” and autpmatic line advance. The

lLine number and a backslash are output before each line

is idinpurt. Input terminates with a CTRL—-Z character.

Caltech Forth 4-38

BiLE auvtomatically advancez after limne 14 of the current
block is entered.
CLR—RL& n CLR-BLE

Set block (n) to blanks.

4,4,.4 Deferred Operations.

A class of operations modelled on the addressing modes of
the FLEF-11 has been developed by H. W. Hammond. These are parti-
cularly valuable when vou need to work with pointers toc access
surcessitve elements of data structures. Straightforward generali-

zaticns to data types other than 1&6-bit integercs are possible,

3 mp)
Store (my at the address (g) found at location ip?.

Equivalent to m g 2 1.

3+ ! mp I+!
Etore (m) at address (g} found at location (pl, then
increment (p)lby 2 bytes. (FBF-11 "auto-incremert")
Equivalent tomp 2@ ! 2 p +!.

Y43 P)+ om
Get the contents of (g) found at location = then

increment (p) by 2 bytes. Equivalent top & 2 2 p t+!'.
-3 ! mp —)!

Decrement contents of (p) by 2 bytes, then store (m} at

location {g) whozse address is found at location (pl.

{("Auto—-decrement") Eguivalent to -2 p+! p @

ya P)3 m

Get the contents of address (g} which is {found &t

Caltech Forth 4-39

location (p). Equivalent to p 2 2.
ya! p Jao!
Eguivalent top @ 3 p !.
-3 po—-YE om
Decrement contents of (p} by 2, then get contents of

location (3} whose address is found at location (pJ.

Equivalent to -2 p +! p 2 2.

4.4.% File System.

The typical Caltech-0OVRO Forth system has one "user" at a
time, but many users seguentially in time. In this environment,
confusion over allocations of hlock storage 1is a significant
problem. Sometimes, many non—-expert persons potentially need to
edit blocks on the same disk. The Forth File System (FFS)
provides orne approach to alleviating the problem of disk
allocation and protection. This system is another example of the
extensibility of Forth. We provide a brief description af the
technique and the wvocabulary of FFS.

FFS divides the Forth block file (which may be a file within
the file structure of an operating system) into "user Ffiles".
Each user +ile may contain up to 312 blocks, numbered O - S11. &
user refers to his bklocks just as in Forth without FFS, 1280y
throvgh BLOCE, LIST, etc. EBlock numbers that the user deals with
are considered logical block numbers; FFE maintains a map,
called the User
File Directory or UFD, of correspondences between logical and
physical blaock numbers. The "physical® block number refers to the

location of a block as it exists relative to the beginning of the

Caltech Forth B0

conplete block File, as understood by the operating system.
Fhysical blocks may be arbitrarily assigned to a users logical
block space (logical disk).

A table of available disk blocks is maintained in a block
called "AVAIL". This is a bit map in whigh each kit signifies
the availability (if 1} of a particular physical block. 4 user,
aftter his UFD ias set up, may reqguest up to S12 blocks to be
placed in his file. Initially, no blocks are allocated to the
user; le@w s any block reference will cause an error message.
The wser must assign himself blocks using the word ASKBLE.
EBlocks are assigned one at a time and are given specific logical
block numbers 1in the user’s file. Elocks do not have to be
asgigned contiguouslys; blocks O, 1, and 3 may be assigned (using
AEMNBLE) while block 2 is unsazssigned. Thus the user only needs
to assign the particular logical blocks he will be using.

Ar unneeded block cean be returned to the available pool with
the word RLSBLE.

A user file is gpecified by a pumeric constant (1 - Si1). (&
suitabhle constant word would normally be defined to specify the
file symbolically, (3= BYSTEM, BETRINGS, VLEI. etc. At all
times, Forth/FFS maintaing a disk "context” which specifies the
user file from which all blocks are taken. The user may change
usar files with the word DISE, e.g., SYSTEM DIGE. The fi1le must
have been previously defined.

Special user files are defined for software packages such as
editores, +loating point, diagnostics, etc. A special word has

been defined to load such packages: SLDOARD. If the user types

Caltech Forth 4-41

DIAGNOSTICES /LO0AD, the diagnostics user file is loaded beginning
with logical block O. /LOAD preserves context, i.e. if the
current user file is SYSTEM, SYSTEM will be current after a /L0OAD
command. Thus /LOAD=s may be nested.

A separate {FILES)} wvocabulary is available to create and
manipuwlate UFDs. It is intended that only system maintainers
("experts") will need to run (FILES).

A system using FFS has the foliowing small added vocabulary

for all users.

SCOFY mn v /COFY
Eopy block (m) from user file {(n) to block (r) of the
current user file.
Example: UBKI DISK 13 USRZ2 10 /CORY
copiesz block 12 of disk USBRZ to block 10 of disk USKI.
JEXCHANGE
m n r /EXCHANGE
This word is' like /EOFY, but the two blocks are
exchangeda.
ASNELE n ASNBELE
Get a block from the available pool, clear it with
blanks, and assign in the logical block number (n) in
the range © — 511 in the current user file. Elock (n?
must previouwsly have been unassigned.
DISE n DISE
SQet the current user File {(disk context) to n?.
Values of (n) are normally defined by constants giving

the symbelic names of the user disks, 8.0., S5YQTEM.,

Caltech Forth 4-47

STRINGS, EDITOR, etc.
RLSELE n RLSELE
Deassign logical block (nY from the current user file

and return it to the available pool.

In addition to the new words described above, some =tandard
disk-related Farth words are modified to support FFS. These are
BLOCH, COFY, EXCHANGE, LIST, LOAD, and SHOW, The modified words

refer only to a user®s current logical disk.

CHAFTER S

ADVANCED TOFIC: LARGER FORTH SYSTEMS

9.1 WHY LLARGER FORTH SYSTEMS?

The "classical" Forth computer is a minicomputer having 16—
bit data wordg amnd lé&-hbit addressing. Typical of such systems
would be the DEC FDF-11, the Hewlett—Packard HF1QOOO, the Data
General Mova/Ecliipses etc. Common 8-~bit microcomputers, such as
the BOR0 and the ZBO, employ 1é46-bit addressing, and can also be
made to perform 1é-bit arithmetic.

Addressing capability {(the width of address fields) is
particularly important for Forth, because Forth intermives
addrezses and data on the same stacks. Llsers are expected to do
their own address arithmetic, Ffeor example, when indexing dats
arrays.

The newer generation of 16-bit microcomputers (such as the
Motorola GE0O0O0 and the Intel BOBS) respond to the reguirement for
address spaces much larger than the 64K bytes allowed by t&~bit
addressing. A complete, general address reference for the new
microcompuiters is typically 32 bits wide. In this regard, they
are similar to the larger scale "midicomputers', such as DEC s
VAaX-11 and Data General’s MV/BO00, which also have 22-bit
adaressing.

Two recent Forth systems have faced the addressing problem
for the new machines, and adopted a J2-bit word length for all
normal Forth data. These are polyFORTH/Z2 (a trademark of Forth,
Inc.) Hor the &BO0O and JFL's Forth for the DEC VAX-11.

FolyFORTH/Z2 is described in the article "Design Considerations

Caltech Forth g

i3

ey

for a A¥-bit Forth” by Mike LLa Manna and Ray Van de Walker in the

Froceedings of the 1782 FORML Conference. {See Hibliography.)

5.2 FORTH FOR VAX-11.

The VAX implementation of Forth is interesting in several
ways., since it mot only confronts the Z2-bit addressing problem,
but 1t interacts in an articulate manner with the complex VME
operating zsystem. We will describe the highlights of JFL/VAX
Forth as an example of how Forth may be effectively employed in

larger computer systems.

De2el TEXT FILEG

It is very convenient, when Forth runs under an operating
Syztemﬁ‘ ta employ "linEMEtructured“ files for text and source
code. Most larger pperating systems represent text files with
variable-length records, each of which corresponds tc a single
printed line. Furthermore, sperial formatting characters, such
as "tab" and "form {eeda, may be used top pesition text without
redundant blank characters. With a slight increase in the

complexity of the Forth system (and some loss in compatibility
with smaller Forth systems), line-structured files can replace or
supplement the traditional fixed-length block—structuwed Forth
file.

In addition to economizing on disk storage, line—
structured files have several further advantages. The files can
easily be JFormatted according to the normal formats of the
operating system. Thus all the normal non—Forth system editors

can operate on Forth source data. Files can be interchanged with

Caltech Forth o

£

user programs written in other languages, such as Fortran or
Fascal.

In practice, we have found, one o©of the significant
advantages of line-structured files with tab characters and
arr indefinite number of lines per file iz that programmers findg
it convenient to write nicely indented, logically clear Forth
code. This has always been a problem with the standard fixed 1é
line screen of earlier Forth systems, in which there is always a
temptation to pack definitions tightly into the minimum possible
space.

=

2
e

-2 DATA WIDTH

As - mentioned above, a 32-bit address must be convenient to
manipul ate in Forth systems for the newer micreocomputers and for
the WVAX-class midicomputers. It is very awkward to deal with
data having mixed lengths on the same stack, s=so it is patural to
consider making a F2«bit stack width standard for these machines.

What are the penalties? There is an cbvious penalty in that
more memory will be used if all {or most) data take Z2 bits when
14 bits might be adeguate in many CAasES. The processor may be
slower in operations involving 32-bit data, particularly if the
data buses are only 16 bits wide.

Double precision (Z2-bit) operations on the Intel BORB& are
definitely slower than single precision, especially for the BOHB
version which has only 8-bit data paths., The memory segmentation
scheme of this processor makes it somewhat awkward to deal with

data sets greater than &4k bytes in length. For these reasons, a

Caltech Forth -4

number of 808&6~based Forth systems have chosen to retain 1&-hit
addressing and not to support the full addressing capacity of the
Processor.

The Maotorola &8000, however, has more of the attributes of a
true 3Z2-bit computer, having 32-bit data and address registers,
for example. Except for extra bus cycles reguired, there is not
much épeed penalty in double precision over single precision
operations. In fact, as La Manna and Van de Walker point out, an
address interpreter (NEXT function) uwsing 16-Bit addresses is
considerably slower than the corresponding 32-bit routine because
of the lack of an instruction toe convert from 16— to IZ2-bit
addresses without sign estension. The full 24-bit address space
is available without segmentation. On balance, the 48009 appears
well-suited to 3Z2-bit Farth implementations.

The VYAX-11 iz designed as a true 3Z2-bit computer, having I2-
or &4-bit data buses, depending on model number. There is
essentially no performance cost in choosing 32— over 1é6—-bit
arithmetic, and memory space in the virtual VME envirocnment 1o
quite inexpensive. The choice of JF2-bit data width Ffor JFL/VAX
Forth was easy.

2

. % ADDRESS INTERFRETER

=P

JFPLAVAX Forth bhas abandoned the Forth address interpreter in

tavor of using the VAX JESE {(jump to subroutine) instruction.
This is a major departure from earlier Forth systems, but there
are +few, if any, cases in which this change is aspparent to the
Luser at the colon-definition level. Incidentally. this

development has establiehed that the "threaded code” technigue

Ealtech Forth 50

ig not fundamentally required in Forth sy=ztems.
Why not use the standard address interpreter? In & 322-bit

environment, address sequences consist of 2Z2-bit fields, ach

=)
22
specifyving a particular addresz from a possible space of EW .
or over 4 gigabytes. 4 course, no Forth program will approach
this size, and many bits of each address will be zero. The memary
"wasted" on wide address fields can beg reclaimed, and a substan-
tial performance increased can be gained., by compiling complete
VAX dnstructions instead of ZZ2-bit addresses.

The JSRB instruction has several variants. If the disctance
hetween the JSB instruction and the routine being called is
closer thamn +127 or -128 bvytes, the byte offset form of JCE is

nesl: this requires only two bytes {14 bitzs)y of memary. More

commonly, the spacing between call and routine will be greaster

than 128, and a word offset form of ISR can be used. With this
variant, taking three bytes (24 bits)y, a J8B can call a routine
as far away as +I2767 or ~IZ76B bytes. I+ this is insufficient,

a longword (22-bit? form is available.

Compiling JSB calls optimized for the shortest lengths com-
patible with +the required offsete allows colon definitions to
take less than 32 bits on average. Ferformance is increased
since the NEXT function (address interpreter) i1z effectively

repleaced by the cne-byte REE {(return from subroutine) instruc—

tion.

L.2.4 IN-LINE CODE

Traditional Forth provides three levels of programming for

Caltech Forth Si—&

the user: direct execution from the terminal or from screens via
the text interpreter; execution of colon definitions via the
address interpreter: and exnecution of CODE definitions through
the address i1nterpreter. JFPL/VAX Foarth adds a fourth level, the
"in~lire" definition with two new deftining words ICODRE and 1.
When yvou are compiling a ward and vou refer to a previously-
defined in—line word, a J8E instruction is not compiled. Instead
a CoOpy Of the parameter field of the word you are referring to is
placed in the parameter +field of the word vou are now compiling.
This has always been a possible technique for older Forth sys—
tems, but without the JFL/VAX JEBR technigue, there would have
been little advantage. Eut with JSR compilation, a transition
from “compiled" sequences of addresses {(J5B instructions) to
machine -cmde inserted iﬁuline costs nothing, since the VAX CFU
interprets either as a valid list of instructions. In-line
compilation for functioms like +, HERE., DUF, getec, costzs very
little since theze functions often take no more memory than a JSE
instruction. Per%mrmancé is improved beravse the overhead dus to

the JSE/REER instructions is eliminated.

Figure T.1 summarizes JPLA/VAX Forth compilation.

Caltech Forth 57
WORD BREING COMFPILED WORDS EBEING REFERENCED
(PARAGMETER FIELD?
i HEADER (A) ¢
/=== 1 JSE AA Vo ———— > CAAY
i f——————— i
! i JSE AR f (AR}
' o e ;
/ ! REH : | e }
o —————— ! S o s s e e] i HEADER (B i
; HEADER (NEW) | / | e :
e e e b /i - ! machine i
H A = e ; / /! tinstructions|
f———————————— 1 / ! o e e e e e e e ! } . e . !
i JSE A Y ! i HEADER (L)) e e e e H
e ! / b e e e o i e e ! : RSE :
i JSE B y———7 it JEE CA = {CA) | reee—————— :
§r———— A Pl —— i
i JSHE CA . fomeme b b JGH CH = CEY
j-—— I s b e e e '
i JSH CE N ' i 1 J8R EC HE R
R I N e e !
i JEBER CC bl ¢! RSE ! e H
o s e e I j————— : i HEADER {(+) }
i ADD ... P ———— e N e e
§ e e e — e ! N e e e e e e i ADD ... '
e ' i KSE !
i RSER ! et ;

Figure S.1 VAX Colon Definmition with In-line refences.

The Figuwre corresponds to the fcllowing definitions:
:t A AA AR AC
CODE B <machine instructionsi NEXT,
I: C CA CRBR T ;
ICODE + <source, destination fields> ADD, NEXT,
¢! NEW <...% A BC 4+ <...5 3
Note that the parameter fields (excluding terminal RSBs) of the
in-line words C and + are copied into the parameter field of the

new word.

Fields have been allocated in the JPL/VAX Forth word header

Caltech Forth o—a

to indicate whether a word is an in-line word, and, if =p, what

the length of its parameter field is. The format of the header

is shown in Figure S.2.

o e e e e e o e o e e s 4 i S v o v s e e i e e e A+
1 1 1 H [) 1]
i COUNT tCH1 CHZ ' CHZE } CH4 | CHS I
e o e e e e s e et o s e e e e e e o e e i e A ————————— e —————————— R
; INL.INE H LI N =
e e i e s e b o e i i e e e e e e e +—+
WORD 13z SIZE
(bit=)
COUNT S ENTRY LENGTH TRUNCATED AT Z2
CH1 2 TWO MSE OF SIX RIT CHARACTER
FOUR LOW ORDER BITS ARE A THREAD
FOR A 16 WAY INTERLEAVED DICTIONARY
THZ2 & CHARACTER 2 0OF ENTRY
[o & ECHARALTER T OF ENTRY
CH4 & CHARACTER 4 0OF ENTRY
CHS & CHARACTER 3 OF ENTRY
(M 1 "SMUDGE" BIT., SET DURIMG ENTRY DEFINITION
WORD 2:
L INE 24 DISFLACEMENT TO THE LAST DEFINED
ENTRY IN THIS THREAD
F 1 FRECERENCE RIT, SET FOR COMPILER DIRECTIVE
Figure 5.2. VAX definition Header Format.

Definition names are treated much as they are in FDF-11 Forth:
seven—bit AGCII characters are compresszed into six-bit fields,
and the leading character is used as a key into a lé—way threaded

dictionary structure.

S.2.5 DOPERATING SYSTEM INTERFACE

In a complex environment such as the WVAX/VME operating

Caltech Forth

LA
i
-g

system, the user may demand correspondingly more capability from
his Forth system. The JFL/VAX Forth system attempts to provide
thie +lexibility at two levels: the user command level, and the
system service level. At the user command level, the ability to
invoke subprecesses to run any standard VMS utility programs, or
even to run other language processors is available through the
SPAWN word. Forth text files are normally edited by calling a
VMS editor (EDT) with this mechanism. The Forth interpreter can
be uwsed as & form of command line interpreter under YMS.

A great wvariety of system service routines is available
through VHEG; these include mathematical rouctines {(square root,
logarithms, trigonometric functions, etc.?), string manipulations,
memory management operations, the high level RMS file system, and
basic I/0 ("RI0N") calls. Conventionaliy, these routines are
invoked through a Macro assembler and a complex macro library
which translates a programmer®s statements like

FLI0OW_ o CHAN=2TTCHAN{R?) ,EFN=RAEB®$L _CTX (R3) . —
FUNC=#10%_SETMODE'®IC0%M_CTRLYAST, -
F1=CYAST,F2=R?,FI-#P5L$C _EXEC

inte a series of MOV and FUBH instructiomns that set up parame-—

ters, selected from a wide range of possible values and formats,
finishing with a CALL to the appropriate system routine. Rafer—
ences to symbolic values, such as 0% _SETMODE, are evaluated

either from the macro library or at the time the obiect program
iz linked for execution.

In JPL/VAX Forth, links to most VME system routines are made
through address tables in the Forth kernel. (The tables are
filled in by the VMS linker.) Sipce VME iz a virtual memory

system, there is little overhead incurred by linking to many

Caltech Forth 5-18

unused routines in system memory space.

It would be possible to define each possible symbolic svstem
call or parameter value as a separate Forth word, but the number
of possible words is gquite large. A better scheme has been
developed for such references. For example, there are numercus
return status codes in VM8 prefixed by 884, such as S5% NORMAL
indicating normal completion of a routine. In Forth, a word S85%
ie defined which takes the literal token following in the input

stream as a modifier. Thus

would preoduce the value corresponding to the VME S55% _NORMAL
symbol . Tables aof modifiers and values are established for each
prefin type, but these tables are not linked in the dictionary;
therefore dictionary search time is not increased, and dictionary

headers are not reguired.

AFFENDIX A
FDF—-11 IMFLEMENTATION.
A.1 DBENERAL CHARACTERISTICS.

The DEC FDF-11 is & popular 15-bit computer architecture
that is available in many models. Caltech~0OVRO operates 4 types
ot FDP-11: two FRF-11/40=s (VLRI Frocessor and 10 m telescope
control), a FDFP-11/20 (27 m telescopes), nunercus LSI-11/07s foar
control of three 10 m anternas, the 40 m antenna, and special
equipment, and a PDF-11/0% uzed for the 1024-channel autocorrela-
tion receiver.

Several Forth systemszs have been developed {for these ma
hines. Ore (for the 11/207 runs as a standalone system using 9
track magnetic tape for block 1/0. Other systems have disk
storage énd S0 Ccan run the DEC pperating systems, RT—11 and REX-
1178, The LEI-11 systems are normally operatored without
operating systems or disksz; they are ‘down-line loaded" from a
larger computer aver serial communications lines. FDF-11 Forth
iz also found running on the Z2-hit VAX—11 computers in their
FOF-11 compatibility mode.

FDF-11s use the standard 7-hit ASCI] character set with one
character right-justified in an 8-bit byte. FDF-11 Foarth

recognizes certain characters for control purposes:

Caltech F

EHARACTER

CTRL-C

CTRL-0

CTRL_~&

CTRL-S

CTRi.—U

RUBOUT

orth A2

FUNCT ION
Interrupts execution of any program and returns contrel
to the keyboard. Two CTRL~Cs may be reguired i+ the
program is not listening to the keyboard.
F¥f—1iiz RT~11 types *." and you may type any monitor
command {e.g. REENTEFR or RUN). REENTER will let you
resume Forth 1n most cases.
REX-113 RSX types "MCR:>" and you may type any monitor
command, wsiich as ABORT., Forth can not be reentered
after aborting.
Inhibits terminal output from a running preogram, but
program continues. Allows vou to skip lengthy lis-
tings. A second CTRL-O turns op output again.,
After you tyﬁe CTRI.~5 to stop tvype ocut, vow may tvpe
CTRL-f to resume.
Stops terminal output from a running program in such a
way that no output will be lost. The program hancs up
after the Dutpﬁt buffer ig full. CTRL-0 may be used to
restart output.
Cancels the entire line you have just typed in. Orily
effective before you type "return'.

Cancels the last character you have just typed in. Same

as DEL or DELETE.

Caltech Forth A2

The 8 FDP-11 registers are allocated according to the

following table:

REM. NAME FUNCTION

Q - General lse

1 T Stack top or General

2 TT Multiply/Divide or General

3 - General Use

4 L Forth Btack Fointer

= IC Forth Instruction Counter

& 2] Forth Return Stack Fointer and

FDF-11 Hardware Stack Fointer
FDF-11 Program Counter

~3
i

fh.2 DICTIONARY FORMAT.
The FDF-11 dictionary format was featured in Section .3 of

this Manual and will not be repeated here.

A. 3 ASSEMELER.
Three types of instructions are supported by FDF-11 Forth:

ZEro-, one—, and two-operand instructions. Forth words I10F and

J

20F are provided to define single and double cperand

It

instructions, respectively.
10F defines words (like CLK,) which require one argument on
the stack. The argument specifies the addressing mode and
register. For example
= CLR,

is equivalent to the Macro—11 line

CLR R3,

\.'
—

which clears register

Caltech Forth A—-4

For more complicated types of addressing a set of auwrilliary

words has heen provided as follows:

ARGS SYMBOL VALUE ADDRESSING TYFE

r) 10 register deferred

r I+ 20 auto—-increment

r)+ S0 anto-increment deferred
*) 40 auto—decrement

I »-2 S0 auto-decrement deferred
o r I &0 inderxed

O r ol 70 indexed deferred

dest N 100000 bvite mode

dst E 100000 byte mode (preferred
notation:

v # 27 immadiate mode

E ard 7 abzolute mode

& F o7 relative mode

a »P 77 relative deferred mode

In this table r stands for any register (0-7), o stands for a 1lé&-
bit offset, dst stands for a complete destination specification
(2.Q. 4 ¥+), v stands for a lé-bit integer value, and a for a
14-bi1it address
Evamples of typical aszembler constructions for single
operand instructions follow with their Macro—-1! counterpartss
= CLR, CLR RZ

Clear register T to zero.

s -y TST, TST — (&)
Subtract 2 from register 5§ (4) and tesgt the data at the location
to which 8 neow points. This is a simple way to reserve a word an
the stack.

i74 1 I} INC, INC 13Z4(R1)
Increment the data word found at the address 134 + (contents of

register 1).

174 1 I) B INC, INCE 134{(R1)

Caltech Forth A

Increment the data byte found at the address 1734 + (contents of
register 1).
X¥YZ P CLR, CLR X¥YZ

Clear the data in variable XYI. {The assembler uses the relative
addreszing mode.)

XYZ 9% CLR, ELR 2#HXYZ
Clear the data in variable XYI. {The assembler uses the absclute
addressing mode.) The F and 2% modes are equivalent in most
CASES.,

Double operand instructions reguivre both a sowrce and a
destination Ffield which can be defined with the mode words as
described above. /A few examples:

S) 112 2 1) MOw, MOV 112(R2), (5

Move data from address 112 + (contents of register 2) to the

stack, after having subtracted 2 fraom register & (4). (You use
the construction -} as a destination to push data on the Forth
stack.)

XYZI P —-10 # MOV, MOV #—-10, XYZ

Move the immediate value (—-10) into variable XYZ.

S y+ T MUL, MUL T, (8)+
Multiply register T (1) by the top stack value, pop the stack,
and return the product in T (1) and TT (2). Mote that the MUL
instruction (like DIV, ASH, etc.}) may have only a register type

"epurce'" field.

Caltech Forth H-&

Conditional branches (IF, THEN, RBEGIN, etc.) are handled

through the FDF—-11 ER-type instructions. The +following Forth

wards are available as constant definitions:

[iaa IR

iz
mim
i—1im
=g
e L
I
=
H e
1<
iy
0 103

These test the FDF-11 condition codes the same way as the branch
instructions Bxx, where #x is replaced by one of the two letter
codes.

T make an assembler conditional branch you give the
following assembler commandss

“zet up condition codes {(TETY> wx IFE, <true codelx THEN,
You +irst =2t up the condition codesy this can be a bvproduct of
some arithmetic (e.g. fraom ann ADD instruction) or the result of
an explicit TST or CMF operation. Next give the two letter
condition code from the list above, followed by IF,. The IF,
will assemble the appropriate branch instruction. (Actually, the
branch around the "true code" must cococur when the condition you
spacify 1s false. =0 the branch that is assembled is the logical
inverse of the condition type vouw specifv.}

An example:

-

thJ
il

ME. EG@ IE, ELAG B 1 # MOV, THEM,

This is assembled like the following Macro-1il code:

CHMe 2,3

EBNE 1%

MOV #1,FLAG
1%:

Caltech Forth

where =i

example

transl ates to the follow

Following is a list

G1oo00 20Fr MOV, DZ0000
040000 20~ BRIC, OS0000
140000 Z0F SUR, 070000
DTE000 20F ASH, O7IO00
Q04000 207 JBR,
SO0 107 CLR, 100 10F
340G 10 NEG, 5SSO0 10F
6000 10F RDR, 6100 10F
0100 10F JIMF, OZO0 10F
G260 10F BET, &700 10F
: NEXT, IC 20 + JMF, ;
: CLLCe 1 CLEAR,: 3 : RTI
t SEC, 1 SET, ;3 0+ J, F
Note: The feollowing oper
S10, and /20: ASH,

a-7
onetruction works in a similar way:
“loop codex xx END,
on from the same list. As & concrete
GiM, © DEG. MI END,

ing Macro-11 code:

i$: DEC O

BFL. 1%

of the FDF-11 Forth assembler op-codes:

20F CMP, OS0000 20F RIT,

20F RIG, O&OO00 20F ADD,

207 MUL, 071000 20F DIV,

20F ASHC, Q74000 20F XOR,

£, 9200 10F INC, D300 10F DEC,
ADC, 54600 10F SEC, 5700 19F TET,
ROL, 6200 10F ABR, 4700 10F ASL,
RTS, OZO00 10F SWAR, 0240 10F CLEAR,
SXT,

s SEMI, IC R 20 + MOV, NEXT, i

s 2 4 3 : WAIT, 1 4, 3 t HALT, © 4 ;
JMF, 3

ations are invalid on the PDF-11/04, /05,

ASHC, XOR, SXT, ™MUL, DIV,

AFFENDIX B
FORTH BIELIOGRAFPHY.
BOOKS. The ftollowing are some contemporary books that describe
Farth or Forth—~like languages. For the most part they are writ—
ten in a semi-technical style and are aimed at the small computer

USsEr.

1. Brodie, Leao, Starting Forth, Prentice-Hall, Engl ewood

Cliftfs, New Jersev, 19281.

2. Hogan, Thom, Discover Forth, Osborne/McGraw-Hill, Rerkeley,

Catifornia, 19B2.

Za Loeliger, R. &G., Threaded Interpretive Languages, Byte

Books, Feterborough, New Hampshire, 1981.

JOURNALS. Many of the personal computer jouwrnals carry articles
on Forth and Forth programs. The following are particularly

noteworthy.

1. Evte. A special Forth issue appeared in September, 1980. A
collection of Forth reprints from Byte issues is available
from the Forth Interest Group (FIGY)*%.

¥Forth Interest Group, F.0O. Box 1105, San Carlos, California

FA0T0,

Caltech Forth B—

3

2. Dr. Dophbs Journal. A special issue appeared in September,
1982.

T Forth Dimensions. This 15 a journal specializing inm Forth,
published by FIG.

CONFERENCE FROCEEDINGS. There have been a number of conferences

dealing with Forth issues. The proceedings are a useful source

for both theoretical and practical understanding of Forth.

i. FORML. (Forth Modification Laboratory) Conference Procee-
dings, 1980, 1281 {(Volumes 1 and 2)Y, and 1982, Available

from FIG.

2. Rochester Forth Contference on Databases and Control, Frocee-—

dings. May, 12832, Available from FIG.

STANDARDS. The latest available Forth standards document is
Forth=-79. a publication of the Forth Standards Team, Qctober,

1980, distributed by FIG. A "Forth-83" standard is in prepara-

tion.
HISTORICAL REFERENCES. Forth had its beginning in the early
19703 in scientific and astronomical communities. The following

are some of the references from that era.

Caltech Forth B2

Ewing, Martin ., The Caltech Forth Macual. Internal Report,
Owens Valley Radioc Observatory, California Institute of
Technoleogy, Fasadena, California, First EBdition, 1974, Sec-—

ond Edition, 19278.

ming System, Froceedings of the Digital Equipment Computer

Users Society, Nov.. 1974, pp 477 — 4B82.

Miedaner, Terrell, AGRT-01 and AST-0O1X Definitions, Memoran-—

dum to the Astronomy Forth Users Group, FKitt FPealk National

Obhservatory, Tucson, Arizona, 1977.

Moore, C. H., and Rather, E. D., The Forth Freogram for

Spectral Lipe Observing, FProc. I.E-E.E.., &1, 9. p. 1344,

Sept.., 12775,

Moore, . H.y Eorth: & New Way to Program a Mini

Rstronomy and Astrophysics Supplement, 19, pp 497 - Git.,
1974,
Rather, E. D., Moore, . H., and Hollis, Jan M., Basic

Frinciples o©of Forth Lanquage as fpplied to a FDFE-11 Compu~

ter, MNational Radio Astronomy Observatory, Charlottesville,

Virginia, Computer Division Internal Report No. 17, 1974,

Sachs, Jonathan, An Introduction to Stoic, Technical Report

BMEC TROOI1, Harvard—-MIT Frogram in Health Sciences and Tech-—

Caltech Forth BE-4

nulogy. HRiomedical Engineering Center for Clinical Instru-

mentation, June, 1974.

B. Sinclair, W. §&., The EURTH Approach to

2
hal
m
™
U
r+
e
J
K1
1N
[
n
r
1LY
]
n

Froc. ACM 76, pp. 2735-240, October, 1976.

	Title
	Contents
	Preface
	1. Introduction
	2. Forth Overview
	3. The Structure of Forth
	4. Forth Vocabularies
	5. Advanced Topic: Larger Forth Systems
	Ap. A. PDP-11 Implementation
	Ap. B. Forth Bibliography

